Este artigo é o terceiro da série “Tudo sobre telemetria do abastecimento municipal de água“.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

Lógica de funcionamento de reservatórios e elevatórias de água tratada

A forma mais usual para garantir o abastecimento de água em um bairro ou região de um município consiste em construir reservatórios em pontos elevados da área atendida, ou construir reservatório elevados quando a região é plana. A água é conduzida aos pontos de consumo por gravidade e o sistema de abastecimento municipal tem como missão, manter os reservatórios abastecidos.

Cabe à estação elevatória de água a função de manter o reservatório abastecido. Para tanto, a informação do nível do reservatório deve ser transmitida à elevatória para essa, por sua vez, comande o funcionamento dos grupos moto bombas de maneira a manter o reservatório sempre com o nível dentro dos níveis predefinidos de operação.

A figura acima apresenta uma tela típica de uma elevatória de água em um sistema de automação e telemetria da distribuição de água do município. A tela apresenta uma elevatória composta por dois conjuntos moto bomba, principal e reserva, e apresenta também o reservatório abastecido por essa elevatória que pode estar distante quilômetros da elevatória.

Nesse tipo de configuração o reservatório terá dois níveis (set points) pré-definidos pela operação:

  • Nível de liga: O nível de liga é mais baixo que o nível de desliga e é aquele nível, que quando atingido, indica para a lógica de comando da elevatória que o grupo moto-bomba deve ser ligado.
  • Nível de desliga: O nível de desliga é mais alto que o nível de liga e é aquele nível, que quando atingido, indica para a lógica de comando da elevatória que o grupo moto-bomba deve ser desligado.

Papel fundamental da telemetria

Perceba que a única informação importante que deve ser transmitida do reservatório para a elevatória é a informação de nível.
Para tanto, existe um centro de controle que está sempre lendo dados de todas as estações e enviando os dados importantes para o funcionamento do sistema para as estações que deles precisam. O nome dessa comunicação sistemática e eterna é pooling e normalmente se dá me intervalos de 1 segundo por estação. Ou seja, a cada segundo, uma estação envia e recebe dados para central. Isso será visto mais detalhadamente quando falarmos sobre o CCO – Centro de Controle e Operação.

Funcionamento da elevatória de água

Para controlar o funcionamento da estação elevatória, o CLP local monitora os seguintes parâmetros locais e remotos:
  • Nível do reservatório (remoto): enviado pelo CCO;
  • Alarme de perda da informação do nível;
  • Pressão de sucção: pressão na entrada das bombas, o bombeamento não pode acontecer se não houver pressão mínima;
  • Pressão de recalque: pressão na saída das bombas;
  • Tensão da rede: as bombas não podem operar se a tensão estiver fora dos mínimos e máximos definidos;
  • Corrente elétrica das bombas: deve ser monitorada para garantir a segurança das bombas e para detectar desgastes preventivamente;
  • Fato de potência: deve ser monitorado para garantir esse controle de consumo;
  • Temperatura e vibração dos mancais dos motores: visa detectar e prevenir desgastes dos motores;
  • Sinais digitais de motores desarmados;
  • Sinais digitais de chaves de comando manual/automático e local/remoto.

Diagrama básico do sistema de controle da elevatória

Exemplo de painel de telemetria

O painel a seguir é genérico e pode ser utilizado tanto em reservatórios como em elevatórias de água tratada.

  • IHM 4,3″ monocromática – TP300
  • Comunicação por rádio modem RM2060
  • Fonte carregadora com bateria e autonomia de 12 horas
  • 08 entradas analógicas em 4 a 20 mA protegidas contra surtos
  • 02 saídas 4 a 20mA com módulos Alfacomp IA2801
  • 24 entradas digitais em 24V livres
  • 16 saídas digitais, sendo 08 isoladas a réle pelo módulo ID2908
  • Módulo iluminador SW3301 com 12 LEDs brancos de alta intensidade
  • Indicação de porta aberta: sensor de porta aberta conectado ao CLP
  • Indicação de alimentação: sensor indica alimentação pela rede ou pela bateria
  • Altura 60 x Largura 40 x Profundidade 20 cm

Falaremos mais sobre os painéis de telemetria em artigo próximo.

Operação da estação elevatória de água

Para que o sistema opere corretamente, as chaves seletoras das bombas e das válvulas devem estar na posição AUTOMÁTICO (comandadas pelo CLP). O sistema funciona automaticamente após a energização do quadro e ligando a chave GERAL.

Operação manual

No Funcionamento Manual o painel de automação não atua sobre o comando das bombas. Em Manual, as bombas são comandas pelo operador diretamente nos quadros de comando respectivos. Durante a operação manual, o painel de automação lê as grandezas elétricas e hidráulicas, executa as comunicações com a central, e monitora entradas digitais. Neste modo de funcionamento, um operador pode ligar e desligar as bombas localmente nos respectivos quadros de acionamento das mesmas (comando manual). SEMPRE QUE UMA OPERAÇÃO DE MANUTENÇÃO FOR SER REALIZADA, A PRIMEIRA AÇÃO DEVERÁ SER A DE COLOCAR O SISTEMA EM MANUAL. ISTO É FEITO POSICIONANDO A CHAVE SELETORA NA POSIÇÃO MANUAL.

Para desativar o sistema e operar manualmente as bombas e válvulas é necessário:

  • Girar as seletora A/M para a posição MANUAL;
  • Aguardar que os grupos sejam desativados. Esta operação se dá sequencialmente;
  • Operar manualmente os grupos pelas chaves localizadas no painel frontal.

Operação automática

Neste modo o acionamento das bombas se dá de acordo com o nível do reservatório de recalque e monitora as condições de operação. Lê as grandezas elétricas e hidráulicas, executa as comunicações com a central e monitora entradas e saídas digitais.

Para selecionar o sistema para controle automático, é necessário:

  • Girar as seletora A/M para a posição AUTOMÁTICO.
  • Aguardar a parada dos equipamentos.
  • Aguardar a entrada seqüencial dos grupos.

Comando via telemetria

Quando em automático, a estação pode ser comandada via central de telemetria. É possível desativar e reativar o funcionamento da elevatória, ligar e desligar grupos e alterar a seleção de grupo principal.

Comandos de ativação e desativação da elevatória de água

Bloqueio – A elevatória é desativada fazendo a posição 0 da tabela de setpoints diferente de zero. Isto faz com que o CLP desative os grupos sequencialmente. Este modo de operação é chamado Manual Remoto.

Desbloqueio – A elevatória é ativada fazendo a posição 0 da tabela de setpoints igual a zero. Isto permite que o CLP opere automaticamente.

Comandos remotos enviados pelo CCO

Comandos remotos podem ser enviados a elevatória pelo CCO. Isto é feito enviando códigos à memória M400 ( posição 0 da tabela de setpoints).

A tabela a seguir lista os comando e ações correspondentes.

Comando                 Ação

  • 1                       Passa o sistema para Manual Remoto ( CCO comanda a estação )
  • 2                       Volta o sistema para Automático ( clp roda automaticamente )
  • 3                       Liga grupo 1
  • 4                       Desliga grupo 1
  • 5                       Liga grupo 2
  • 6                       Desliga grupo 2
  • 7                       Zera horímetro do grupo 1
  • 8                       Zera horímetro do grupo 2
  • 9                       Zera falhas do grupo 1
  • 10                     Zera falhas do grupo

Baixe o e-book do projeto completo

E-book Projeto Completo e Gratuito de Sistema de Telemetria da Distribuição Municipal de Água

E-book Projeto Completo e Gratuito de Sistema de Telemetria da Distribuição Municipal de Água

Leia também

Este artigo é o quarto da série “Tudo sobre telemetria do abastecimento municipal de água.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

CCO – Centro de Controle e Operação – O que é

Dotado de computadores e monitores, o CCO permite que a equipe de operação supervisione e controle o funcionamento de todo o sistema de abastecimento de água do município. Do centro de operações é possível comandar de forma automática e manual o funcionamento de elevatórias, reservatórios, boosters, válvulas, comportas, macro medidores de vazão e qualquer outro dispositivo eletromecânico. Toda a comunicação se dá via rádio. A foto abaixo apresenta um exemplo de CCO.

CCO do SAAE de Indaiatuba - SP

CCO do SAAE de Indaiatuba – SP

Diagrama geral do sistema de telemetria comandado pelo CCO

A figura a seguir mostra um exemplo didático de sistema de telemetria do abastecimento de água municipal composto por:

  • 1 CCO – Centro de Controle e Operação;
  • 2 elevatórias  de água tratada;
  • 2 reservatórios de água;
  • 1 VRP – Válvula reguladora de pressão;
  • 1 macro medidor de vazão.

Todas as estações são dotadas de rádios modem. O CCO é dotado de antena omnidirecional e as estações de antenas direcionais. Quando necessário, repetidoras de rádio são utilizadas para que a comunicação alcance estações mais distantes ou que não possuam visada direta com o CCO.

Equipamentos componentes de um CCO

No exemplo a seguir, o Centro de Controle Operacional do sistema de abastecimento de água municipal é dotado dos seguintes equipamentos:

  • 1 computador rodando o software supervisório SCADA servidor;
  • 2 computadores rodando cópias de visualização (viewers) do SCADA;
  • Rede Ethernet;
  • 1 impressora;
  • Painel de rádio modem;
  • Antena omni direcional.
Topologia de um CCO

Topologia de um CCO

O computador onde está instalado a licença SCADA servidor é responsável pela comunicação do sistema. A intervalos de tempo definidos, comunica com todas as estações remotas, buscando e enviando dados. O mesmo pode ser configurado para alimentar os bancos de dados onde são armazenados dados históricos de alarmes, leituras e eventos.
Os computadores que rodam cópias viewer podem ser configurados para apenas supervisionar ou também controlar o sistema.

O painel do rádio modem pode ser instalado próximo ao microcomputador servidor e conectado ao mesmo por cabo serial em RS232.

O rádio modem pode também ser instalado junto à antena omni no ponto mais elevado do prédio do CCO. Nessa condição, o rádio será conectado ao painel via cabo de rede CAT5. O cabo irá conduzir a alimentação e a comunicação. A comunicação entre o rádio e o painel se dará em RS485. Este cabo pode ter até 100 metros de comprimento sem necessidade de condutores adicionais.

Painel do CCO

O painel abriga uma fonte de alimentação e um conversor serial RS232/RS485. A utilização principal para a qual a solução foi concebida, é a interligação do computador ao um rádio modem. O rádio modem estará instalado próximo à antena, utilizando-se o KIT RPE, e será alimentado pela fonte de alimentação do painel PT5200.

Painel de telemetria do COO

Painel de telemetria do COO

Instalação do rádio junto a antena

KIT RPE – Rádio em ponto elevado

O rádio modem pode ser instalado próximo à antena. Com esta solução, as perdas no cabo de RF são minimizadas e podemos instalar o rádio afastado do computador e interligado por cabo de rede CAT5. A alimentação do rádio e a comunicação em RS485 são transportadas pelo cabo em distâncias de até 100 metros. O gabinete utilizado tem IP67 e pode ficar ao tempo.

Os painéis com rádio em ponto elevado possuem o conversor CS485-V ao invés do rádio. Esta solução é indicada quando a melhor posição da antena está a mais de 10 metros do rádio ou quando o sinal de rádio é fraco.

KIT RPE – Rádio em ponto elevadoSoftwares do CCO

O software central de controle de um CCO é o software supervisório, também chamado SCADA (Supervisory Control and Data Acquisition). Este software permite visualizar na forma de telas gráficas o processo que está sendo supervisionado e controlado, no caso, o sistema de distribuição de água tratada do município. O software supervisório, normalmente está organizado em módulos e licenças, sendo que os principais são:

  • Servidor: responsável pela aquisição de dados e processamento de scripts;
  • Visualizador: responsável pela visualização gráfica e interface com o usuário.

Um mesmo computador pode rodar um dos módulos ou ambos.
Exemplo de tela configurada no SCADA:

Tela típica de uma estação de bombeamento e reservação

Tela típica de uma estação de bombeamento e reservação

Iremos detalhar o SCADA e sua operação no artigo sobre este assunto.

Protocolo de comunicação

O protocolo de comunicação mais utilizado na telemetria de água e esgoto é o Modbus.

Modbus é um protocolo de comunicação serial desenvolvido e publicado pela empresa Modicon (hoje uma empresa do grupo Schneider Electric) em 1979 pra uso em seus CLPs (Controladores Lógicos Programáveis). O protocolo Modbus se transformou no protocolo mais difundido para comunicação entres dispositivos de controle e automação industrial. Os motivos principais para o uso do Modbus em ambiente industrial são:

  • Foi desenvolvido especialmente para aplicações industriais;
  • Domínio público e sem cobrança de direitos autorais;
  • Fácil de utilizar e manter;
  • Comunicação de bits e words entre dispositivos de diferentes fabricantes sem restrições.

Saiba mais sobre o protocolo Modbus: https://alfacomp.net/2020/12/17/protocolo-modbus-saiba-mais-sobre-o-procolo-de-comunicacao-mais-utilizado-na-automacao-industrial/

Comunicação via rádio

Rádio modem RM2060

Rádio modem RM2060

A comunicação de dados por rádios modem é possível em faixas canalizadas, sendo que cada estação tem de ser licenciada pela Anatel, e também em faixas destinadas à operação de transceptores que utilizam a técnica do espalhamento espectral, ou spread spectrum. Esses últimos estão dispensados de licenciamento dentro de certas condições. Os enlaces diretos, sem repetidoras, utilizando transceptores dotados de modems, são possíveis em distâncias desde alguns poucos metros até mais de 30 km. Utilizando repetidoras, as distâncias podem ser estendias a centenas de quilômetros. Obstruções devidas a relevo e edificações são fatores determinantes na viabilidade dos enlaces.

O transceptor RM2060 consiste em uma solução de alto desempenho e baixo custo para comunicação wireless utilizando tecnologia Spread Spectrum na faixa dos 900 MHz podendo substituir milhares de metros de cabos de comunicação em ambientes industriais ruidosos. Utilizando comprovada tecnologia FHSS, que dispensa licença de operação junto a Anatel, o transceptor RM2060 estabelece comunicação entre computadores, CLPs e instrumentos diversos que possuem porta serial em padrão RS232 ou RS485 com taxas de 1200 a 115.200 bps. Para aumentar a segurança e integridade das comunicações, os transceptores RM2060 permitem a encriptação dos dados. Alcance de até 32 km com visada.

Saiba mais

Leia também

Este artigo é o quinto da série Tudo sobre telemetria do abastecimento municipal de água“.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

O que são remotas de telemetria?

Remotas de telemetria são, por definição, dispositivos micro processados que permitem monitorar e controlar objetos físicos a distância, conectando sensores e atuadores a um sistema SCADA de tele supervisão e controle. Outros nomes para remota de telemetria são:

  • UTR – Unidade Terminal Remota;
  • URT – Unidade Remota de Telemetria;
  • RTURemote Telemetry Unit ou Remote Telecontrol Unit.

No âmbito da telemetria da distribuição de água municipal, uma designação que se tornou bastante popular para a remota de telemetria é o “Painel de telemetria“.

Composição das remotas de telemetria

A figura abaixo apresenta uma composição típica de uma remota de telemetria. No exemplo mostrado, a remota de telemetria é composta por:

  • Fonte de alimentação – Transforma a tensão alternada da rede nas tensões CC usuais, geralmente 24 VCC e gerencia a carga da bateria para a operação na falta de energia da rede;
  • CLP (Controlador Lógico Programável) – Responsável por todo o processamento local e automatismo da remota;
  • Interfaces de entradas – Condicionam os sinais de campo fornecidos pelos sensores. Podem estar incorporadas ao CLP ou serem módulo externos ao mesmo;
  • Interfaces de saída – Condicionam os sinais analógicos e digitais produzidos pelo CLP para o comando dos atuadores. Podem estar incorporadas ao CLP ou serem módulos externos ao mesmo;
  • Rádio modem – Podem ser rádios spread spectrum, canalizados ou rádios GPRS/GSM. Permitem à remota comunicar com o CCO ou com outras remotas.

Exemplos de componentes utilizados na remota de telemetria

A figura a seguir mostra uma possível configuração utilizando os seguinte módulos:

  • Fonte com bateria modelo 2061;
  • Rádio modem RM2060;
  • CLP Haiwell modelo T48S0P com 28 ED e 20 SD;
  • Interface IA2820 com 8 entradas em 4 a 20 mA;
  • Interface ID2908 com 8 saídas isoladas a relé.

Painel de telemetria PT5520

O painel de telemetria PT5520 é indicado para uso na automação e telemetria das seguintes estações:

  • Elevatórias de água e esgoto
  • Reservatórios
  • Boosters
  • Macro-medidores

Baseado no CLP Haiwell modelo C48S0P, o painel apresenta alto índice de integração, modularidade, facilidade de manutenção e protocolo MODBUS RTU mestre e escravo, resultando em uma montagem de alto desempenho e baixo custo.

Lista de peças do painel PT5520

Painel de telemetria PT5420 – Opção econômica

PT5420 - Painel de telemetria econômico

O painel de telemetria PT5420 é indicado para uso na automação e telemetria das seguintes estações:

  • Elevatórias de água e esgoto
  • Reservatórios
  • Boosters
  • Macro-medidores

Baseado no CLP Haiwell modelo C16S0P, o painel constitui uma versão econômica ou para estações de menor porte. Apresenta alto índice de integração, modularidade, facilidade de manutenção e protocolo MODBUS RTU mestre e escravo, resultando em uma montagem de alto desempenho e baixo custo.

PT5420 - Painel de telemetria econômico

Lista de peças do PT5420

Programação em Ladder das remotas de telemetria

Os programas em Ladder completos para a automação de reservatórios, elevatórias e demais estações componentes do sistema de distribuição de água municipal serão apresentados no artigo que irá tratar deste assunto. Se você tiver interesse ou necessidade de antecipar essa informação, clique aqui.

e-Book Telemetria do abastecimento municipal de água

Baixe o projeto completo aqui.

E-book Projeto Completo e Gratuito de Sistema de Telemetria da Distribuição Municipal de Água

Leia também

 

Este artigo é o quarto da série Tudo sobre telemetria do abastecimento municipal de água“.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

 

 

O que é a telemetria via rádio da distribuição de água tratada

O sistema de distribuição de água tratada é composto de reservatório e elevatórias de água tratada, válvulas reguladoras de pressão, pontos de macromedição de vazão, booster e estações de tratamento entre outros pontos de interesse. Para que o CCO – Centro de Controle e Operação – possa se comunicar com todos essas estações remotas, é necessário um sistema de comunicação. O meio de melhor custo-benefício para implementar essa comunicação é o que chamamos de telemetria via rádio, e o rádio mais utilizado para esse serviço é o rádio modem spread spectrum. Na faixa dos 900 MHz. Este artigo ensina como dimensionar e instalar o sistema de rádio para a telemetria da distribuição de água do município.

O que é um rádio modem

Os rádios transceptores ditos analógicos são compostos de um bloco transmissor e um bloco receptor. Popularmente chamados de rádio voz, possuem, em suas conexões, os seguintes sinais básicos:

  • TX – sinal de áudio que será transmitido pelo bloco transmissor;
  • RX – sinal de áudio recebido pelo bloco receptor;
  • PTTPush to talk (aperte para falar), que é o sinal que coloca o transceptor em modo de transmissão;
  • CDCarrrier Detected (portadora detectada), que é o sinal que indica que o rádio está recebendo o sinal emitido por um transmissor.

Em comunicação de voz, o TX é conectado a um amplificador de áudio que aciona um alto-falante e ao RX é ligado um microfone. Ao PTT é ligada uma chave para acionar a transmissão. Em comunicação digital, esses sinais são ligados a sinais correspondentes de um modem.

Rádio Modem é o nome dado aos equipamentos que unem um rádio e um modem e têm a capacidade de transmitir e receber dados digitais por rádio. A palavra MODEM deriva de modulator demodulator, equipamento capaz de converter informação serial digital em analógica e vice-versa.

São os seguintes os sinais básicos na interface serial de um rádio modem:

  • TXD – sinal serial a ser transmitido
  • RXD – sinal serial recebido
  • RTS – Request to Send (pedido para transmitir) indica para o rádio modem que o equipamento conectado solicita transmissão
  • CTS – Clear to Send (pronto para transmitir) indica para o equipamento conectado que o rádio modem está pronto para receber os dados a serem transmitidos
  • CD – Carrrier Detected (portadora detectada), que é o sinal que indica que o rádio está recebendo o sinal emitido por um transmissor

O que é um rádio modem spread spectrum

O FHSS (Frequency Hopping Spread Spectrum) ou Espalhamento Espectral por Saltos em Frequência foi inventado pela atriz Hedy Lamarr e pelo compositor George Antheil em 1941 e desenvolvido pelas forças armadas americanas a partir da Segunda Guerra Mundial, com a intenção de criar um sistema de comunicação por rádio mais protegido contra interceptações. As primeiras idéias sobre essa tecnologia, entretanto, datam das décadas de 20 e 30.

A técnica de spread spectrum consiste em espalhar a transmissão no espectro de frequências ocupando uma banda maior, mas com densidade de potência pequena.

Os rádios spread spectrum utilizam as faixas de frequências livres adotadas por vários países, inclusive o Brasil, denominadas como bandas ISM (Instrumentation, Scientific & Medical) definidas em 900 MHz, 2,4 GHz e 5,8 GHz.

Frequency hoppingO sinal transmitido é comutado rapidamente entre diferentes frequências dentro de uma faixa do espectro de forma pseudo-aleatória e o receptor “sabe” de antemão onde encontrar o sinal a cada novo salto.

No Brasil, a legislação que regula o uso da tecnologia spread spectrum foi inicialmente definida pela ANATEL através da Norma 02/93, posteriormente pela Norma 012/96 (resolução 209 de Jan/2000) e atualmente pela resolução 305 de Jul/2002 – Regulamento sobre Equipamentos de Radiocomunicação de Radiação Restrita.

As faixas de frequências estabelecidas para uso por equipamentos de radiocomunicação empregando a técnica de spread spectrum, para aplicações Ponto a Ponto e Ponto Multiponto, estão assim definidas: 902 a 928 MHz, 2400 a 2483,5 MHz e 5725 a 5850 MHz. Dessa forma, os sistemas que utilizam a tecnologia de spread spectrum não necessitam da licença ANATEL para a sua instalação e operação, desde que sejam atendidos os requisitos das Resoluções 209 e 305.

A regulamentação vigente estabelece as condições de operação para os sistemas que operam por Saltos de Frequência, para os sistemas que operam em Sequência Direta e para os Sistemas Híbridos. Nas faixas de 900 MHz a potência de pico máxima de saída do transmissor não deve ser superior à 1 Watt para sistemas que empreguem no mínimo 50 canais de salto e 0,25 Watt para sistemas empregando menos de 50 canais de salto. Sistemas operando nas faixas de 2,4 GHz e 5,8 GHz devem trabalhar com potência de pico máxima de saída do transmissor não superior à 1 Watt.

O que é um rádio enlace

Podemos definir como rádio enlace o conjunto de equipamentos necessários para estabelecer comunicação por rádio entre dois pontos.


Os elementos básicos para a implementação de um rádio enlace são:

  • Rádio transmissor;
  • Linha de transmissão da estação transmissora;
  • Antena transmissora;
  • Meio de propagação;
  • Antena receptora;
  • Linha de transmissão da estação receptora;
  • Rádio receptor;

Comunicação ponto-a-ponto

Na comunicação ponto-a-ponto a existem apenas pares de estações que se comunicam entre si como no exemplo didático abaixo. Normalmente, se utilizam apenas antenas direcionais nesse tipo do topologia.

Comunicação ponto-multiponto

Na comunicação ponto-multiponto uma estação central, ou mestra, irá comunica com diversas estações remotas como no exemplo abaixo. Normalmente, a estação central possui uma antena omnidirecional, enquanto as estações remotas são dotadas de antenas direcionais. Esse tipo de topologia é o mais utilizado na telemetria da distribuição de água municipal.

Topologia do sistema de rádio

A topologia do sistema de rádio diz respeito à definição dos enlaces de rádio. É como um mapa que determina qual estação se comunica com qual. Veja um exemplo prático real abaixo.

Projeto de rádio

O projeto de rádio define todos os enlaces, equipamentos e considerações necessárias para projetar e implementar o sistema de comunicação via rádio da telemetria da distribuição de água do município. Para realizar o projeto de rádio é necessário:

  • Listar as coordenadas geográficas de todos os pontos de interesse (remotas, repetidoras, CCO);
  • Levantamento dos perfis de terreno em cada enlace;
  • Avaliação da necessidade de pontos de repetição quando existem obstruções ou grandes distâncias;
  • Cálculo de rádio enlace para cada enlace do sistema. O cálculo de rádio enlace irá definir o tipo de rádio, antenas e ganhos de antenas, inclinação e azimute para a instalação da antena, tipo de cabo de RF, comprimento máximo de cabo de RF, potência e sensibilidade dos rádios.

Mapa dos enlaces de rádio

De posse dos cálculos de rádio enlace podemos mapear os enlaces com a ajuda de softwares como o Google Earth. Veja o exemplo abaixo.

Planilha de cálculo do rádio enlace

De posse das coordenadas geográficas e do levantamento do perfil do terreno entre os dois pontos, podemos planilhar os dados e calcular o enlace com a ajuda de software e planilhas de cálculo.

A planilha abaixo apresenta um exemplo de cálculo de rádio enlace utilizando a planilha desenvolvida pela Alfacomp e que está disponível para download.

 

Cálculo de rádio enlace

Uma abordagem prática voltada para sistemas de automação, telemetria e SCADA

O cálculo de rádio enlace avalia a viabilidade de comunicação entre dois pontos. Se você já teve que interligar equipamentos seriais que comunicam via RS232 ou RS485 em distâncias ou situações em que cabos seriais eram inviáveis, este artigo é para você. Utilizar rádio modem para comunicar equipamentos que se comunicam serialmente é mais fácil do que parece. Veja como calcular o enlace de rádio.

Componentes básicos de um rádio enlace

Podemos definir como rádio enlace o conjunto de equipamentos necessários para estabelecer comunicação por rádio entre dois pontos. Os elementos básicos para a implementação de um rádio enlace são:

  • Rádio transmissor;
  • Linha de transmissão da estação transmissora;
  • Antena transmissora;
  • Meio de propagação;
  • Antena receptora;
  • Linha de transmissão da estação receptora;
  • Rádio receptor;

Comportamento da energia ao logo do percurso

Desde a saída do transmissor até a chegada no receptor, o sinal sofre atenuações e ganhos. O gráfico ao lado representa a variação da intensidade do sinal ao longo do percurso. A intensidade do sinal sofre as seguintes alterações:

  • Perda no cabo do transmissor;
  • Ganho na antena transmissora;
  • Perda no espaço livre;
  • Ganho na antena receptora;
  • Perda no cabo do receptor.

As intensidades, perdas e ganhos são representados em decibel (dB).

A escala logarítmica

O dB é uma escala utilizada para representar a relação entre duas potências. São as seguintes as unidades de referência usuais nos sistemas de rádio:

  • dBW – relação entre uma dada potência e a unidade de 1W;
  • dBm – relação entre uma dada potência e a unidade de 1mW;
  • dBi – relação entre o ganho de uma antena e o ganho do irradiador isotrópico (antena teórica com diagrama de irradiação esférico).

O cálculo da relação entre duas potências é dado pela fórmula abaixo.

Exemplo: Seja uma potência de 0,001 mW, sua intensidade dada em dBm é calculada como:

10 log (0,001 mW / 1 mW) = – 30 dBm

Cálculo de Rádio Enlace

Dizemos que um enlace é viável se a intensidade calculada do sinal recebido é maior do que o nível de sensibilidade do receptor, guardada a margem de segurança. O cálculo da intensidade de sinal recebido é dado pela fórmula abaixo:

Onde:

  • Tx – Potência de saída do rádio transmissor (dBm);
  • Pt – Perda por atenuação no cabo da antena transmissora (dB);
  • Gt – Ganho na antena transmissora (dBi);
  • Ao – Atenuação no espaço livre (dB);
  • Gr – Ganho da antena receptora (dBi);
  • Pr – Perda por atenuação no cabo da antena receptora (dB);
  • RX – Sinal recebido (dBm).

Atenuação no Espaço Livre

Uma onda eletromagnética propagando-se no espaço sofre uma atenuação contínua. A intensidade é inversamente proporcional ao quadrado da distância, ou seja, quando a distância dobra, o sinal diminui para um quarto do valor. A atenuação no espaço livre pode ser calculada pela fórmula abaixo.

Onde:

  • D = distância em metros;
  • λ = Comprimento de onda (m) = 300 / freqüência (MHz);
  • Ao = Atenuação do espaço livre (dB).

Ou, utilizando a frequência (f) em MHz:

Cálculo da Potência Efetivamente Irradiada (ERP)

A Potência Efetivamente Irradiada (ERP) por uma estação transmissora pode ser calculada pela fórmula abaixo.

O valor da ERP é importante na análise para enquadramento das estações às normas da Anatel.

Perda por Obstrução da Primeira Zona de Fresnel

A energia transportada de uma antena transmissora até uma antena receptora é contida em elipsóides concêntricos chamados zonas de Fresnel. Dizemos que não existe perda por obstrução quando não há obstáculos dentro da primeira zona. Essa avaliação é feita levantando-se o perfil do terreno entre as duas estações com a ajuda de mapas cartográficos e calculando-se o raio da zona ao longo do percurso.

O cálculo do raio de Fresnel é apresentado abaixo.

Perdas ocasionadas por obstruções conhecidas como  gume de faca são calculadas com base no percentual de liberação da primeira zona de Fresnel e seguem a fórmula abaixo.

Onde v é o índice de liberação do raio de Fresnel dado por:

Ondas Eletromagnéticas

A energia enviada pelas antenas transmissoras e captada pelas antenas receptoras é transportada por ondas eletromagnéticas. Seu nome origina-se do fato de que são compostas por campos elétricos e magnéticos variáveis e se propagam no vácuo à velocidade de 300.000 quilômetros por segundo.

A maneira como os campos elétrico e magnético se orientam no espaço é chamada polarização. Se o campo elétrico é paralelo à superfície da Terra, dizemos que a polarização é horizontal; se o campo elétrico está em plano perpendicular à superfície da Terra, a polarização é vertical.

Podemos orientar antenas verticalmente ou horizontalmente.

Conceito: OEM é uma perturbação física composta por um campo elétrico (E) e um campo magnético (H) variáveis no tempo, perpendiculares entre si, capazes de se propagar no espaço.

Frequência: número de oscilações por unidade de tempo (Hz).

Comprimento de onda: distância percorrida pela onda durante um ciclo. É definido pela velocidade de propagação dividida pela frequência. Ver fórmula ao lado.

Antenas

Antenas são dispositivos capazes de transmitir e captar ondas eletromagnéticas nas faixas de radiofrequência. São compostas de componentes metálicos nas mais variadas configurações. Os comprimentos e a disposição dos elementos irão depender das frequências em que se deseja operar. Alguns tipos de antenas são listados abaixo.

  • Yagi;
  • Painel Setorial;
  • Omnidirecional;
  • Antenas Patch;
  • Log – Periódica;

As antenas de interesse principal em telemetria são a Yagi e a omnidirecional.

Antena Yagi – Uda

Normalmente conhecida apenas por antena Yagi, foi concebida em 1926 por Shintaro Uda da Universidade Tohoku do Japão com a colaboração de Hidetsugu Yagi, que teve seu nome associado à antena quando publicou o primeiro artigo em inglês descrevendo a mesma. Conceitualmente, a antena Yagi é composta por um Refletor, um dipolo simples ou dobrado e um ou mais diretores. A antena da figura é apresentada na posição de polarização vertical que é normalmente utilizada em telemetria e apresenta ganhos que vão de 3 até mais de 20 dBi.

Antena Omnidirecional

Normalmente construídas com a concepção colinear, essas antenas, como sugere o nome, irradiam com a mesma intensidade em todas as direções do plano horizontal. Sua polarização é naturalmente vertical e apresenta ganhos na faixa de 2 a 10 dBi.

Polarização de Antenas

A figura a seguir apresenta a irradiação resultante de um dipolo simples polarizado verticalmente. Em polarização vertical, o plano elétrico é perpendicular à superfície da Terra, enquanto o plano magnético é paralelo à superfície da Terra.

Diagrama de Irradiação

O diagrama de irradiação é a representação gráfica da forma como a energia eletromagnética se distribui no espaço.

O diagrama pode ser obtido tanto pelo deslocamento de uma antena de prova em torno da antena que se está medindo, como pela rotação dessa em torno do seu eixo, enviando os sinais recebidos a um receptor capaz de discriminar com precisão a freqüência e a potência recebidas.

Os resultados obtidos são geralmente normalizados. Ao máximo sinal recebido é dado o valor de 0 dB, facilitando a interpretação dos lóbulos secundários e a relação frente-costas.

A curva em azul representa a energia irradiada em cada direção em torno da antena.

Ângulo de Meia Potência

Os ângulos de meia potência são definidos pelos pontos no diagrama onde a potência irradiada equivale à metade da irradiada na direção principal. Esses ângulos definem a abertura da antena no plano horizontal e no plano vertical.

OBS: -3 dB = 50% Potência

No exemplo ao lado temos: Ângulo de –3dB = 55°

Diretividade

É a relação entre o campo irradiado pela antena na direção de máxima irradiação e o campo que seria gerado por uma antena isotrópica que recebesse a mesma potência. A diretividade de uma antena define sua capacidade de concentrar a energia irradiada numa determinada direção.

          E máx = Energia da antena em estudo.

          E isso = Energia da antena isotrópica.

Ganho

O ganho pode ser entendido como o resultado da diretividade menos as perdas. Matematicamente, é o resultado do produto da eficiência pela diretividade.

G = Ganho

D = Diretividade

η = Eficiência

A eficiência de uma antena diz respeito ao seu projeto eletromagnético como um todo, ou seja, são todas as perdas envolvidas (descasamento de impedância, perdas em dielétricos, lóbulos secundários…). Normalmente, está na faixa de 90% a 95%.

Cabos

Linha de transmissão é uma linha com dois ou mais condutores isolados por um dielétrico que tem por finalidade fazer com que uma OEM se propague de modo guiado. Essa propagação deve ocorrer com a menor perda possível. As linhas de transmissão podem ser construídas de diversas maneiras: cabos paralelos, pares trançados, microstrip, cabos coaxiais, guias de onda, etc.

Os cabos coaxiais são as linhas de transmissão mais utilizadas em aplicações de telemetria.

Conectores e Protetores Contra Surto

A tabela a seguir apresenta alguns dos conectores mais utilizados nas aplicações de Telemetria.

Leia também

Este artigo sobre SCADA para o saneamento – Software supervisório, para controle e aquisição de dados – para a telemetria do saneamento é o oitavo da série Tudo sobre telemetria do abastecimento municipal de água“.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

Neste artigo apresentamos um template de software supervisório genérico para um sistema de automação e telemetria de 10 reservatórios e 10 elevatórias de água tratada.

Ao longo do artigo iremos apresentar e descrever:

  • Arquitetura do sistema SCADA de telemetria
  • As telas e suas funcionalidades
  • As telas de reservatórios e seus ajustes
  • As telas de elevatórias e seus ajustes
  • Históricos e seus ajustes
  • Alarmes e seus ajustes
  • Telas de macromedidores
  • Operação automática, manual remota e manual local
  • Telas de comunicações e seus ajustes
  • O template completo e como obtê-lo
  • O software Haiwell Cloud SCADA e como obtê-lo

Seguindo os tutoriais e contando com ajuda de nosso suporte (https://alfacomp.net/suporte/– Whataspp (51)3029.7161), você irá baixar o software gratuito Haiwell Cloud SCADA, irá também baixar o template da aplicação pronto para uso.

Aprendendo a configurar o SCADA, você irá customizar o template para a realidade de sua cidade, tudo isso sem custo.

Arquitetura do sistema SCADA de telemetria

O sistema de automação funciona em protocolo mestre-escravo. A centralização de todas as comunicações se dá no microcomputador do CCO (Centro de Controle e Operação) localizado na [nome do local]. A água tratada na ETA é bombeada para os reservatórios por uma rede de estações elevatórias. Os níveis e parâmetros remotos necessários para o funcionamento de cada estação são lidos e repassados pelo computador do CCO a cada UR (Unidade Remota), ou seja, a informação de nível do reservatório para o qual uma determinada elevatória recalca água é lida do reservatório e enviada para a elevatória.

O operador do sistema supervisório pode efetuar comandos para as estações tais como: bloquear o funcionamento, alterar parâmetros de setpoints do grupo motobomba, ajustar setpoint de controle PID, ligar e desligar os grupos entre outros comandos que serão comentados a seguir.

Todas as comunicações partem da CCO que é dotada de uma antena omni direcional.

Software supervisório SCADA

Este tópico é ilustrativo e demonstra as linhas gerais que orientarão o desenvolvimento do software supervisório.

O software é configurado com HAIWELL SCADA e gravado no disco rígido do microcomputador da central, contendo todas as condições operacionais e controles tais como, por exemplo, níveis de reservatório e comando de motores.

Neste software o operador tem a possibilidade de especificar as condições de setpoints para ligamento e desligamento de bombas, pressão mínima de sucção, além de comandar manualmente os motores e visualizar todas as medições de grandezas elétricas e hidráulicas.

O software contém telas ilustradas artisticamente, com desenhos de reservatórios e motores, com diferentes cores para identificar diferentes estados de funcionamento dos motores. Além disso, fornece relatórios periódicos e online de todas as leituras do sistema. Nas telas também aparecem os alarmes de pane do sistema de maneira visual e sonora.

São registradas em arquivos armazenados no disco rígido do microcomputador, as informações dos últimos xx meses.

Neste item são dadas instruções genéricas e são feitas observações sobre os padrões de representação adotados na configuração do software supervisório.

Tela de abertura do software supervisório

É a tela que surge quando o software é iniciado. Todas as telas são organizadas com uma barra de Menu no topo. A barra de Menu é composta de uma caixa de seleção que dá acesso às diversas telas do aplicativo e de botões para acesso direto às janelas de históricos, alarmes, comunicações, macromedidores, reservatórios e teclas que permitem avançar para a próxima estação ou retroceder para a anterior.

Tela de Login do software supervisório

A tecla de Login permite registrar os usuários e dar acesso às funcionalidades do sistema conforme as permissões de cada um.

SCADA Login

Tela de reservatórios do software supervisório

Esta tela mostra os reservatórios, apresentando os níveis em metros de coluna d’água, porcentagem e volume cúbico de cada reservatório.

SCADA Reservatórios

A tela específica de cada reservatório é ativada clicando sobre o desenho do mesmo.

  • A tela de reservatório apresenta o valor do nível em metros, metros cúbicos e em percentual.
  • O indicador de vazão apresenta a leitura instantânea da vazão em litros por segundo.
  • O quadro de GERAL sinaliza a alimentação pela bateria, a porta do painel aberta, invasão, o alarme sonoro ativado.
  • Clicando sobre o botão CALA ALARME SONORO é possível silenciar o alarme sonoro.
  • Clicando sobre o botão ZERA TOTALIZADOR é possível zerar o totalizador de vazão do macro medidor.

Sempre que um botão é clicado, um comando é enviado para o reservatório e aparece a mensagem Comando enviado. Quando a estação receber este comando, responderá com a mensagem Comando Recebido.

Janela de ajustes dos reservatórios

Clicando no botão Parâmetros Ajustáveis presente na tela dos reservatórios, faz surgir à janela de ajuste de parâmetros ajustáveis dos reservatórios. Essa tela permite ajustar para cada reservatório, os seguintes parâmetros:

  • Máximo – valor máximo de altura útil do reservatório;
  • Alarme baixo – valor do nível para indicação do alarme por nível baixo do reservatório;
  • Alarme alto – valor do nível para indicação do alarme por nível de extravasão do reservatório;
  • Volume – valor máximo do volume em metros cúbicos do reservatório.

SCADA Janela de ajuste dos reservatórios

Tela de macromedidores

Esta tela apresenta os valores do acumulador de volume e as vazões instantâneas lidas pelos macro medidores.

SCADA Macromedidores-1024x576