Você sabia que o problema de baixo fator de potência na instalação elétrica – que pode gerar multa da concessionária de energia, pode ser resolvido com a instalação dos controladores de fator de potência?

Observe a sua conta de energia elétrica. Se nela constar o consumo reativo excedente, isso é um sinal de que há um problema com o fator de potência. Quanto mais esse consumo estiver afastado do valor legal, maior será a multa aplicada pela concessionária de energia.

É aí que entram os controladores de fator de potência, que vão ajudar você a corrigir essa falha na instalação elétrica. Antes de apresentar os tipos de controladores de fator de potência, é necessário entender o que é o fator de potência.

O que é fator de potência?

O fator de potência (FP) é a medida de quanto da potência elétrica consumida está sendo convertida em trabalho útil. O mínimo permitido de fator de potência na conta de energia, segundo a Agência Nacional de Energia Elétrica (ANEEL), é de 0,92. Se o valor estiver abaixo disso, a concessionária pode cobrar multa, como citado anteriormente.

As principais causas do baixo fator de potência são lâmpadas de descarga (fluorescentes, vapor de mercúrio, vapor de sódio e vapor metálico) com reatores de baixo fator de potência (sem capacitor), transformadores em vazio (sem carga) ou com baixa carga e motores de indução (motores mais usados na indústria).

O que é e como funciona o controlador de fator de potência

ST8200C Controlador de fator de potênciaOs controladores de fator de potência medem a tensão e a corrente da carga de forma contínua, calculando os seus valores através de algoritmos matemáticos, de forma a obter os valores TRUE RMS. Calculado dessa forma, o fator de potência considera o conteúdo harmônico da corrente e da tensão, resultando em medidas mais precisas.

Opcionalmente, o fator de potência pode ser obtido via interface serial da saída de usuário do registrador eletrônico de potência (REP). Neste caso, não há cálculo de harmônicos.

Conforme a necessidade, ou seja, sempre que o fator de potência indutivo fica abaixo do setpoint, os controladores ativam um ou mais bancos de capacitores, proporcionando, assim, uma correção eficiente.

Os controladores possuem diversas características cujo objetivo é proteger seu investimento nos bancos de capacitores. Entre elas está o tempo de repouso, ou seja, o tempo programado para evitar que um banco de capacitores seja religado logo após seu desligamento, o que poderia danificar o capacitor e certamente diminuiria a vida útil das contactoras (que conectam os capacitores à rede elétrica).

Da mesma forma, toda vez que o fator de potência ultrapassa o ponto de desligamento programado, através do desligamento de cargas indutivas que estavam sendo compensadas, o controlador desativa um ou mais bancos de capacitores, até que o fator de potência ultrapasse o ponto de desligamento programado.

Outra característica importante é o desligamento dos bancos de capacitores quando a tensão da rede atinge valores elevados, evitando sobretensões de longa duração, ou então quando o conteúdo harmônico da corrente e da tensão fica muito elevado, podendo causar ressonâncias na instalação e danificar os capacitores.

Exemplo de controlador de fator de potência

Os controladores ST8200C possuem diversas características cujo objetivo é proteger seu investimento nos bancos de capacitores. Entre elas está o tempo de repouso, ou seja, o tempo programado para evitar que um banco de capacitores seja religado logo após seu desligamento, o que poderia danificar o capacitor e certamente diminuiria a vida útil das contactoras (que conectam os capacitores à rede elétrica).

Esquemas elétricos de ligações

As figuras a seguir mostram os esquemas de ligação dos controladores ST8200C.

Conexões ST8200C fase-neutro

ST8200C Controlador de fator de potência

Conexões ST8200C fase-fase

ST8200C Controlador de fator de potência

OBS: O transformador de corrente (TC) deve estar posicionado imediatamente após a fonte de energia (subestação, transformador ou quadro geral) para medir a corrente proveniente das cargas e células de capacitores. Evite que a fiação de sinal do TC passe pelos mesmos dutos do comando das contactoras. A alimentação é feita através da entrada auxiliar.

Conexões ST8200C com ligação a interface de usuário

ST8200C Controlador de fator de potência

Observações importantes na instalação do controlador de fator de potência

  • O transformador de corrente (TC) deve estar posicionado logo após a fonte de energia (subestação, transformador ou quadro geral) para medir a corrente proveniente das cargas e células de capacitores, e o diâmetro de sua fiação não deve ser inferior a 2,5 mm2.
  • Quando a conexão da medição de tensão for entre duas fases, estas devem ser diferentes da fase em que se está monitorando a corrente, através do TC. Por sua vez, o TC deve ser ligado às entradas TC1 e TC2 do controlador.
  • Quando a conexão de medição de tensão for entre fase e neutro, o TC deverá estar na fase utilizada e conectado às entradas TC1 e TC2 do controlador.
  • Cada acionamento de contactora deve ser protegido com um fusível individual.
  • A fiação de medição da tensão e da corrente (TC) obrigatoriamente deve ser feita em dutos separados do comando das contactoras por uma distância de, no mínimo, 10 cm. A fiação também não deve passar nos dutos dos cabos de potência, onde circulará a corrente dos capacitores.
  • Deve-se colocar um TC específico para a medição de corrente (sempre na relação de transformação xxx/5A). Caso já exista um instrumento de medição, a medição de corrente pode aproveitar o TC do instrumento, desde que o sinal do TC seja sempre ligado em série com o controlador. Os terminais do TC podem ser aterrados.
  • Tome cuidado com a tensão de alimentação e a forma de ligação das contactoras. O fio comum das contactoras deve ser diferente do utilizado na alimentação do controlador. Lembre que a tensão/corrente máxima de cada saída de acionamento é de 250VAC/5A.
  • Quando for utilizada a interface opcional para REP, sem conexão aos TCs e à tensão da rede, as medidas elétricas desses dois parâmetros serão zeradas.
  • É necessário aplicar tensão à entrada de medição para que sejam mostrados, no menu de medidas elétricas, tanto o parâmetro de tensão como o de corrente. Do contrário, esses dois parâmetros serão zerados.

Painel frontal do controlador de fator de potência

ST8200C Controlador de fator de potência

Os LEDs 1 a 16 indicam quando o respectivo banco de capacitores está sendo acionado.

LEDs indicadores

  • OK Equipamento ligado
  • ST Aceso, indica algum alarme ativo
  • RX Indica canal serial recebendo dados
  • TX Indica canal serial transmitindo dados

Fundamentos teóricos

Potência ativa

A potência ativa, conhecida também como potência real ou útil, é aquela que realiza um trabalho útil numa determinada carga. Essa carga, por sua vez, pode ser de iluminação ou qualquer outro dispositivo que converta a energia elétrica em alguma outra forma de energia útil. Isso quer dizer que a potência ativa é responsável por gerar luz, movimento, calor, etc. A unidade de medida da potência ativa é Watt (W). Dependendo da situação, pode ser o Quilowatt (kW).

Potência reativa

A potência aparente refere-se à potência total que uma determina fonte é capaz de fornecer a um sistema. Esta consiste na soma vetorial da potência ativa e da potência reativa. A sua unidade de medida é o Volt Ampère (VA) ou quilo Volt Ampère (kVA). No âmbito da comercialização de eletricidade, a potência aparente é toda a potência disponibilizada pelo comercializador de energia a um determinado imóvel.

Potência aparente

A potência aparente é definida como a potência total que uma determinada fonte é capaz de fornecer. A sua unidade de medida é o Volt Ampère (VA). Nesse sentido, a relação entre potência aparente e potência ativa é chamada fator de potência. Ou seja, este estabelece a relação da quantidade de energia fornecida pela fonte e a quantidade de energia que é efetivamente transformada em trabalho. Quando um fator de potência é alto significa que grande parte da energia que chega à instalação é transformada em trabalho. Quando é baixo significa que apenas uma pequena parcela da energia recebida é convertida em trabalho. Isso quer dizer que, quanto maior a quantidade de potência ativa, maior é o fator de potência.

O fator de potência

O fator de potência representa a relação entre a potência aparente e a potência ativa. Isto quer dizer que o fator de potência representa a relação entre a quantidade de energia que foi entregue pela fonte e a quantidade de energia que realmente foi transformada em trabalho, ou seja, que foi utilizada no imóvel em questão. Numa escala de zero a um, quanto maior for o fator de potência de uma carga, maior será a sua potência ativa, ou seja, aquela convertida em trabalho. Ao contrário, quanto menor for um fator de potência, menor será a sua potência ativa e, portanto, maior será a sua potência reativa (aquela que não realiza nenhum trabalho efetivo).

Correção do fator de potência

O objetivo da correção do fator de potência é o ganho de eficiência, além de evitar defasagens entre tensão e corrente, não permitindo que os equipamentos operem com cargas desajustadas e sem produção efetiva.

Sabe-se que o baixo fator de potência ocorre quando se consome muita energia reativa em relação à energia ativa. A energia reativa pode ser neutralizada por uma carga capacitiva, assim, o caminho mais seguro para efetivamente corrigir o fator de potência e compensar as cargas indutivas existentes, é fazer a instalação de um banco de capacitores.

Em alguns casos, como em sistemas muito capacitivos como por exemplo, linhas de transmissão, é usado banco de indutores para compensar o efeito capacitivo.

As cargas indutivas produzem um adianto da corrente elétrica em relação à tensão. As cargas capacitivas produzem um atraso da corrente em relação à tensão. O banco de capacitores e o banco de indutores atuam compensando a defasagem entre a tensão e a corrente, basicamente se “opondo” as cargas indutivas.

Causas de baixo fator de potência

Muitas vezes a condição e a manutenção dos equipamentos podem levar a um baixo fator de potência. Considerando a indústria como exemplo, deve ser tomado uma serie de cuidados, além de considerar as situações que podem ser identificadas e corrigidas.

Veja alguns desses fatores que são os maiores causadores de fator de potência baixo em empresas!

  • Motores de baixa potência atuando em conjunto
  • Equipamentos trabalhando sem carga
  • Superdimensionamento de energia
  • Equipamentos com defeito ou muito antigos
  • Iluminação com uso de reatores para lâmpadas
  • Uso de máquinas de solda
  • Aparelhos de tratamento térmico

Por isso é importante que o fator de potência fique dentro dos limites, considerando os valores de cargas indutivas existentes. Assim, o dimensionamento adequado do banco de capacitores é necessário para ter o melhor aproveitamento de energia elétrica.

Corrigir o fator de potência nas empresas trás varias vantagens, veja algumas na lista abaixo.

  • Redução do consumo de energia elétrica
  • Aumento da vida útil das instalações e equipamentos
  • Redução de calor gerado em equipamentos
  • Redução da corrente reativa
  • Evitar manutenção desnecessária em equipamentos
  • Não é necessário trocar as seções de condutor para os de maior bitola
  • Não é necessário trocar de transformador para um de maior capacidade

REFERÊNCIA

Leia também

O uso de Controladores de Demanda nas instalações atendidas por contratos de fornecimento de energia elétrica pela concessionária é uma forma de garantir que o sistema não ultrapasse os limites contratuais, resultando na aplicação de multas. Os pequenos consumidores são cobrados apenas pela energia utilizada (consumo). Já os médios e grandes consumidores pagam tanto pela energia quanto pela potência disponibilizada.

A potência aparece nas contas desses consumidores com o nome de demanda que, na verdade, corresponde à potência média verificada em intervalos de 15 minutos. A Agência Nacional de Energia Elétrica (ANEEL) é quem regulamenta e estabelece estes parâmetros nas contas de energia elétrica.

Mas você sabe o que é um Controlador de Demanda e por que utilizar esse equipamento pode ajudar sua empresa ou indústria a ter mais eficiência energética?

O que é o Controlador de Demanda?

ST8500C Controlador de demandaUm Controlador de Demanda tem como intuito gerir de forma automática a entrada e saída de cargas na rede elétrica, a fim de impedir a ultrapassagem de consumo da demanda contratada, evitando o pagamento de multas pelo excesso de demanda.

O funcionamento de um Controlador de Demanda de Energia Elétrica é muito fácil. O usuário cadastra o valor da potência que contratou com a concessionária e o valor de cada carga que deve ser gerenciada, isto é, que seja ligada e desligada conforme a necessidade. A partir desse momento, o equipamento verifica de tempos em tempos a potência consumida no barramento. Assim, ele vai ligar e desligar as cargas que estão cadastradas para que essa potência consumida no barramento fique sempre abaixo da medida contratada pela concessionária.

A conexão de cargas é gerenciada por reta de carga ou por horário, e a programação de demanda pode ser definida mês a mês. Com o ST8500C da Alfacomp, por exemplo, você pode emitir via software relatórios do controle de demanda. Além disso, a memória de registro deste equipamento é de 60 dias e a programação pode ser realizada via painel, supervisório ou APP.

Porque fazer o controle de demanda em uma indústria

Fazer o controle de demanda é indicado pois, permite além do gerenciamento das cargas por demanda, o gerenciamento das cargas por horário. Isso proporciona, por exemplo, que um grupo gerador seja acionado no horário de ponta, conectando a uma saída programada por horário.

Um controlador de demanda pode ser útil também em instalações fotovoltaicas para evitar a injeção de potência excedente na rede da concessionária. O software supervisório da Alfacomp garante um histórico da instalação, dando ao gestor uma ferramenta de análise de seu uso e consumo de energia elétrica.

A conta de energia elétrica de consumidores de médio e grande porte é composta da soma de parcelas referentes ao consumo, demanda e ultrapassagem. A parcela de consumo é calculada multiplicando o consumo medido pela tarifa de consumo. Já a parcela de demanda é calculada multiplicando-se a tarifa de demanda pela demanda contratada ou pela demanda medida (a maior delas).

Os Controladores ST8500C possuem características específicas para proteger as  máquinas e equipamentos. Entre essas está o tempo de repouso, que é o tempo programado para evitar que uma carga seja religada logo após seu desligamento – o que pode danificar a máquina e diminuir a vida útil das contactoras (que conectam as cargas à rede elétrica). Os Controladores também permitem programar o acionamento e desligamento das cargas com lógica inversa, isto é, desligando a saída do Controlador para cargas ativas, evitando paradas por pane do controle.

O controlador de demanda e a eficiência energética

A utilização de controles de demanda não fica restrita a evitar a multa por descumprimento do contrato. Também é interessante como uma forma de limitar o consumo e consequentemente contingenciar custo de energia elétrica. Por isso é um equipamento para implementar a operação industrial com eficiência energética.

O uso destes equipamentos de controle de demanda podem levar aos consumidores os benefícios do gerenciamento de energia, reduzindo perdas e, em muitos casos, permitindo a diminuição no valor da fatura de energia. Pelo ponto de vista do fornecimento, a existência de um Controle de Demanda nas unidades consumidoras permite um melhor planejamento e maior aproveitamento do sistema de distribuição, minimizando investimentos e aumentando a eficiência energética do setor.

Tarifação

Seguem conceitos e definições envolvidos na sistemática de tarifação:

  • Potência: é a capacidade de consumo de um equipamento elétrico, expressa em Watts (W) ou quilowatts (kW).
  • Energia: é a quantidade de eletricidade utilizada por um aparelho elétrico ao ficar ligado por um determinado tempo. Tem como unidades mais usuais o quilowatt-hora (kWh) ou megawatt-hora (Mwh).

A tarifa de energia elétrica é a composição de valores calculados que representam cada parcela dos investimentos e operações técnicas realizadas pelos agentes da cadeia de produção e da estrutura necessária para que a energia possa ser utilizada pelo consumidor. A tarifa representa, portanto, a soma de todos os componentes do processo industrial de geração, transporte (transmissão e distribuição) e comercialização de energia elétrica. São acrescidos ainda os encargos direcionados ao custeio da aplicação de políticas públicas. Os impostos e encargos estão relacionados na conta de luz.

As empresas concessionárias fornecem energia elétrica a seus consumidores, com base em obrigações e direitos estabelecidos em um contrato de concessão, celebrado com a União, para a exploração do serviço público de distribuição de energia elétrica em sua área de concessão. No momento da assinatura do contrato, a empresa concessionária reconhece que o nível tarifário vigente, ou seja, as tarifas definidas na estrutura tarifária da empresa, em conjunto com os mecanismos de reajuste e revisão das tarifas estabelecidas nesse contrato, são suficientes para a manutenção do seu equilíbrio econômico-financeiro (ANEEL, 2019).

Métodos de tarifação se referem à forma que os consumidores são classificados para a cobrança do seu consumo de energia elétrica. Para o mesmo, deve-se observar a estrutura tarifária e grupos de consumidores (PROCEL, 2011).

Estrutura Tarifária

A estrutura tarifária é um conjunto de tarifas (lista de preços) aplicáveis às componentes de consumo de energia elétrica e/ou demanda de potência, de acordo com a modalidade de fornecimento. Busca refletir as diferenças de custos relacionados ao fornecimento de energia a cada tipo de consumidor. A partir de então, define-se a relatividade dos preços. A estrutura compreende a diferenciação das tarifas, segundo os componentes de consumo e demanda, nível de tensão de fornecimento, classe de consumo, estação do ano, período do dia, localização do consumidor, etc. (BITU; BORN, 1993).

As tarifas de energia elétrica não têm um mesmo valor para todos os consumidores. Elas se diferenciam entre grupos tarifários, de acordo com a tensão de fornecimento, o momento do consumo, o tipo de tarifa e a classe do consumidor. As mesmas podem ser estruturadas e diferenciadas de muitas formas (VIEIRA, 2016).

Teoricamente, poderia ser definida uma tarifa para cada consumidor, porém, dificuldades de diversas naturezas como, por exemplo, as restrições de comercialização, sistema de medição e cobrança, limitam o grau de aprimoramento da estrutura tarifária.

O consumidor paga um preço final que inclui, além das tarifas, as taxas ou encargos, as contribuições e os impostos que são tributos, ou seja, pagamentos obrigatórios que não representam uma punição por ato ilícito e que devem ser previstos em lei (FUGIMOTO, 2010).

As taxas ou encargos independem da quantidade consumida de energia e estão relacionadas com as despesas de atendimento as unidades de consumo. Estão relacionadas aos custos associados ao atendimento dos consumidores, diretamente às unidades de consumo.

Existem taxas especiais como aquelas relacionadas com o consumo adicional de combustíveis nas usinas térmicas. As taxas permitem repassar rapidamente ao consumidor aumento imprevistos nos custos. O preço final de fornecimento pago pelo cliente é a composição da tarifa, contribuições, taxas, com impostos como o ICMS (FUGIMOTO, 2010).

Classificação dos Consumidores

Para fins de faturamento, as unidades consumidoras são agrupadas em dois grupos tarifários, definidos, principalmente, em função da tensão de fornecimento e também, como consequência, em função da demanda. Se a concessionária fornece energia em tensão inferior a 2300 Volts, o consumidor é classificado como sendo do “Grupo B” (baixa tensão); se a tensão de fornecimento for maior ou igual a 2300 Volts, será o consumidor do “Grupo A” (alta tensão). Estes grupos foram assim definidos:

Consumidores do Grupo A

Grupamento composto de unidades consumidoras com fornecimento em tensão igual ou superior a 2,3 kV, ou, ainda, atendidas em tensão inferior a 2,3 kV a partir de sistema subterrâneo de distribuição e faturadas neste Grupo, em caráter opcional, nos termos definidos na Resolução ANEEL n 456, caracterizado pela estruturação tarifária binômia e subdividido nos subgrupos A1, A2, A3, A3a, A4 e AS. A tabela abaixo apresenta estes subgrupos.

Subgrupos

Tensão

A1 Tensão de fornecimento igual ou superior a 230 kV
A2 Tensão de fornecimento de 88 kV a 138 kV
A3 Tensão de fornecimento de 69 kV
A3a Tensão de fornecimento de 30 kV a 44 kV
A4 Tensão de fornecimento de 2,3 kV a 25 kV
AS Tensão de fornecimento inferior a 2,3 kV atendidas a partir de sistema subterrâneo de distribuição e enquadradas neste Grupo em caráter opcional.

Os consumidores deste grupo são cobrados tanto pela demanda quanto pela energia que consomem. Esses consumidores podem enquadrar-se em uma das duas alternativas tarifárias:
• Tarifação convencional;
• Tarifação horo-sazonal.

Tarifação Convencional

O enquadramento na tarifa convencional exige um contrato específico com a concessionária no qual se pactua um único valor da demanda pretendida pelo consumidor (demanda contratada), independentemente da hora do dia (ponta ou fora de ponta) ou período do ano (seco ou úmido).

Os consumidores do Grupo A, subgrupos A3a, A4 ou AS, podem ser enquadrados na tarifa convencional quando a demanda contratada for inferior a 300 kW, desde que não tenham ocorrido, nos 11 meses anteriores, 3 (três) registros consecutivos ou 6 (seis) registros alternados de demanda superior a 300 kW.

A conta de energia elétrica desses consumidores é composta da soma de parcelas referentes ao consumo, demanda e ultrapassagem. A parcela de consumo é calculada multiplicando-se o consumo medido pela tarifa de consumo.

A parcela de demanda é calculada multiplicando-se a tarifa de demanda pela demanda contratada ou pela demanda medida (a maior delas), caso esta não ultrapasse em 10% a demanda contratada.

A parcela de ultrapassagem é cobrada apenas quando a demanda medida ultrapassa em mais de 10% a demanda contratada. É calculada multiplicando-se a tarifa de ultrapassagem pelo valor da demanda medida que supera a demanda contratada (BRASIL, 2000).

Tarifação Horo-Sazonal

Essa modalidade é caracterizada pela aplicação de tarifas diferenciadas de consumo de energia elétrica e demanda de potência de acordo com as horas de utilização do dia e dos períodos do ano.

A estrutura de tarifação horo-sazonal pode ser aplicada, segundo os seguintes modelos de tarifação:

a) Tarifa Verde

O enquadramento na tarifa Verde dos consumidores do Grupo A. Essa modalidade tarifária exige um contrato específico com a concessionária no qual se pactua a demanda pretendida pelo consumidor (demanda contratada), independentemente da hora do dia (ponta ou fora de ponta). Embora não seja explícita, a Resolução 414 de 2010 da Aneel permite que sejam contratados dois valores diferentes de demanda, um para o período seco e outro para o período úmido (BRASIL, 2010). A conta de energia elétrica desses consumidores é composta da soma de parcelas referentes ao consumo (na ponta e fora dela), demanda e ultrapassagem.

A parcela de demanda é calculada multiplicando-se a tarifa de demanda pela demanda contratada ou pela demanda medida (a maior delas), caso esta não ultrapasse em mais de 10% a demanda contratada. A tarifa de demanda é única, independente da hora do dia ou período do ano.
A parcela de ultrapassagem é cobrada apenas quando a demanda medida ultrapassa em mais de 10% a demanda contratada. É calculada multiplicando-se a tarifa de ultrapassagem pelo valor da demanda medida que supera a demanda contratada.

b) Tarifa Horo-sazonal Azul

O enquadramento dos consumidores do Grupo A na tarifação horosazonal azul é obrigatório para os consumidores dos subgrupos A1, A2 ou A3. Essa modalidade tarifária exige um contrato específico com a concessionária no qual se pactua tanto o valor da demanda pretendida pela consumidora no horário de ponta (demanda contratada na ponta) quanto o valor pretendido nas horas fora de ponta (demanda contratada fora de ponta).

Embora não seja explícita, assim como na tarifa verde, a resolução 414 permite que sejam contratados valores diferentes para o período seco e para o período úmido (BRASIL, 2010).

A fatura de energia elétrica desses consumidores é composta pela soma de parcelas referentes ao consumo e demanda e, caso exista, ultrapassagem. Em todas as parcelas observa-se a diferenciação entre horas de ponta e horas fora de ponta (CENTRAIS ELÉTRICAS BRASILEIRAS, 2011).

A parcela de demanda é calculada somando-se o produto da tarifa de demanda na ponta pela demanda contratada na ponta (ou pela demanda medida na ponta, de acordo com as tolerâncias de ultrapassagem) ao produto da tarifa de demanda fora da ponta pela demanda contratada fora de ponta (ou pela demanda medida fora de ponta, de acordo com as tolerâncias de ultrapassagem).

As tarifas de demanda não são diferenciadas por período do ano. A parcela de ultrapassagem é cobrada apenas quando a demanda medida ultrapassa a demanda contratada acima dos limites de tolerância de 5% para os sub-grupos A1, A2 e A3 e 10% para os demais sub-grupos. O valor desta parcela é obtido multiplicando-se a tarifa de ultrapassagem pelo valor da demanda medida que supera a demanda contratada (PROCEL, 2011).

Consumidores do Grupo B

As unidades consumidoras atendidas em tensão inferior a 2,3 kV, ou ainda unidades atendidas em tensão superior a 2,3 kV e faturadas neste grupo, são caracterizadas pela estruturação tarifária monômia (ANEEL, 2000).

Consumidor do grupo B é aquele que recebe energia elétrica na tensão entre 220 e 380 V e tem com a concessionária de energia um contrato de adesão. Contrato de adesão é um instrumento contratual, com cláusulas vinculadas às normas e regulamentos aprovados pela ANEEL, não podendo o conteúdo das mesmas ser modificado pela concessionária ou consumidor, a ser aceito ou rejeitado de forma integral (ANEEL, 2000).

Os consumidores do Grupo B (baixa tensão< 2.300 Volts) são classificados em:

  • B1 – residencial;
  • B2 – rural;
  • B3 – demais classes;
  • B4 – iluminação pública.

Os consumidores de baixa tensão (Grupo B) são classificados ainda de acordo com o número de fases. São três os tipos de fornecimento, conforme o número de fases:

  • Tipo A – monofásico – dois condutores (uma fase e o neutro);
  • Tipo B – bifásico – três condutores (duas fases e o neutro);
  • Tipo C – trifásico – quatro condutores (três fases e o neutro).

Para determinação destes, deverá ser calculada a carga instalada de cada unidade consumidora. Essa carga será o somatório das potências nominais de placa dos aparelhos elétricos e das potências de iluminação declaradas. Quando houver cargas de motores, deverão ser computadas as suas respectivas quantidades e potências individuais (PROCEL,2011).

Nos consumidores enquadrados no Grupo B, apenas o consumo de energia é faturado, não existindo cobrança relativa à demanda de potência (PROCEL, 2011).

Horários Fora de Ponta e de Ponta

O horário de ponta (P) é o período definido pela distribuidora e composto por 3 (três) horas diárias consecutivas, exceção feita aos sábados, domingos, terça-feira de carnaval, sexta-feira da Paixão, “Corpus Christi”, e oito dias de feriados conforme descrito na resolução ANEEL 414, considerando a curva de carga do seu sistema elétrico, aprovado pela ANEEL para toda a área de concessão. O horário fora de ponta (F) é o período composto pelo conjunto das horas diárias consecutivas e complementares àquelas definidas no horário de ponta (VIANA; BORTONI; NOGUEIRA, 2012).

Horários de ponta e fora de ponta para uma unidade consumidora

Controle de demandaFonte: Viana, Bortoni e Nogueira (2012).

Ainda segundo Viana, Bortoni e Nogueira (2012), estes horários são definidos pela concessionária em virtude, principalmente, da capacidade de fornecimento que a mesma apresenta. A curva de fornecimento de energia típica de uma concessionária pode ser vista através da figura abaixo, onde o maior valor de demanda ocorre geralmente no horário de ponta.

Curva típica de fornecimento de potência de uma concessionária

Controle de demanda

Fonte: Viana, Bortoni e Nogueira (2012).

Períodos seco e úmido

Estes períodos guardam, normalmente, uma relação direta com os períodos onde ocorrem as variações de cheias dos reservatórios de água utilizados para a geração de energia elétrica. O período Seco corresponde ao período de 07 (sete) ciclos de faturamento consecutivos iniciando-se em maio e finalizando-se em novembro de cada ano; é, geralmente, o período com pouca chuva. O período Úmido corresponde ao período de 05 (cinco) ciclos de faturamento consecutivos, compreendendo os fornecimentos abrangidos pelas leituras de dezembro de um ano a abril do ano seguinte; é, geralmente, o período com mais chuva (CARVALHO, 2011).

Demanda de energia elétrica

Conforme a Resolução 456 da ANEEL no Art. 2º, § VIII, demanda é a média das potências elétricas ativas ou reativas, solicitadas ao sistema elétrico pela parcela da carga instalada em operação na unidade consumidora, durante um intervalo de tempo especificado. Assim, esta potência média, expressa em quilowatts (kW) e quilovolt-ampère-reativo (kvar), respectivamente. Pode ser calculada, por exemplo, dividindo-se a energia elétrica absorvida pela carga em um certo intervalo de tempo Δt, por este intervalo de tempo Δt, podendo ser expressada pela equação abaixo.

Controle de demanda

No Brasil o intervalo de tempo (período de integração) é de 15 minutos, portanto, em um mês teremos: 30 dias x 24 horas / 15 minutos = 2880 intervalos (ANEEL, 2019).

Segundo Suppa e Terada (2010), temos os métodos de medição síncrona e assíncrona. O método de medição síncrona é aquele utilizado por todas as concessionárias brasileiras e pela maioria dos países, medindo a energia ativa num determinado intervalo de tempo que pode variar de 15 à 60 minutos na maioria dos casos.

Na prática, o que se faz é integrar os pulsos de energia dentro deste intervalo, por isso chamado de intervalo de integração, obtendo o que chamamos de demanda de energia ativa, ou seja, a demanda é a energia média consumida em cada intervalo de 15 minutos não existindo plenamente antes do fechamento do intervalo.

Geralmente a concessionária fatura pelos maiores valores registrados nos períodos de fora-ponta e ponta ou pelos valores contratados, os que forem maiores. A cada início do intervalo de integração o consumo é zerado dando início a uma nova contagem. Se ao final do intervalo o valor médio de fechamento for superior ao limite permitido o usuário arcará com pesadas multas por ultrapassagem.

Ainda conforme resolução são adotadas algumas definições entre a distribuidora e o consumidor por meio de contratado de prestação de serviço, sendo eles (ANEEL, 2019):

  • Demanda: média das potências elétricas ativas ou reativas, solicitadas ao sistema elétrico pela parcela da carga instalada em operação na unidade consumidora, durante um intervalo de tempo especificado.
  • Demanda contratada: demanda de potência ativa a ser obrigatória e continuamente disponibilizada pela concessionária, no ponto de entrega, conforme valor e período de vigência fixados no contrato de fornecimento e que deverá ser integralmente paga, seja ou não utilizada durante o período de faturamento, expressa em quilowatts (kW);
  • Demanda de ultrapassagem: parcela da demanda medida que excede o valor da demanda contratada, expressa em quilowatts (kW);
  • Demanda medida: maior demanda de potência ativa verificada por medição, integralizada no intervalo de 15 (quinze) minutos expressa em quilowatts (kW);
  • Demanda faturável: valor da demanda de potência ativa identificada de acordo com os critérios estabelecidos e considerados para fins de faturamento, com aplicação da respectiva tarifa, expressa em quilowatts (kW).

Para o faturamento do consumo, acumula-se o total de kWh consumidos durante o período: fora de ponta seca ou fora de ponta úmida, e ponta seca ou ponta úmida. Para cada um desses períodos, aplica-se uma tarifa de consumo diferenciada, e o total é a parcela de faturamento de consumo. Evidentemente, as tarifas de consumo nos períodos secos são mais elevadas que nos períodos úmidos, e no horário de ponta é mais cara que no horário fora de ponta (PROCEL, 2011).

A cobrança é sempre em função da demanda contratada e do consumo. Quando se contrata uma demanda, na verdade, se está solicitando que a empresa fornecedora disponibilize uma determinada quantidade de energia para ser consumida. Dessa maneira, poderão ocorrer três casos de cobrança (PROCEL, 2011):

  • Demanda registrada inferior à demanda contratada: aplica-se a tarifa de consumo e demanda correspondente ao valor contratado;
  • Demanda registrada superior à demanda contratada, mas dentro da tolerância de ultrapassagem: aplica-se a tarifa de consumo e de demanda correspondente à demanda
  • Demanda registrada superior à demanda contratada e acima da tolerância: aplica-se a tarifa consumo e de demanda correspondente à demanda contratada, e soma-se a isso a aplicação da tarifa de ultrapassagem, correspondente à diferença entre a demanda registrada e a demanda contratada. Ou seja, paga-se tarifa normal pelo contratado, e tarifa de ultrapassagem sobre todo o excedente.

Ultrapassagem da Demanda

De acordo a Aneel (2018), a demanda de energia é contratada junto à concessionária (paga-se por ela independente do uso). A monitoração da demanda é realizada pela média dos 15 minutos de integração. Sua medição é realizada com base na “média” dos 15 minutos de integração de demanda. A ultrapassagem de demanda elétrica é controlada com base nos valores médios da integração de 15 minutos, ou seja, a demanda média de 15 minutos não pode ultrapassar a demanda contratada. Caso ocorra a ultrapassagem, a concessionária cobrará a multa com base no maior valor registrado. De acordo com o tipo de consumidor, existe uma tolerância sobre o valor de demanda contratada para que não haja cobrança de multas, conforme definido na Resolução 456 de 29 de novembro de 2000, Art. 2°, § VIII:

  • 5%, para as unidades cuja tensão de fornecimento seja maior ou igual a 69 kV (tarifa azul);
  • 10%, para as unidades cuja tensão de fornecimento seja menor que 69 kV e no mês de faturamento, a demanda para fora de ponta (tarifa azul) e a demanda (tarifa verde), sejam superiores a 100 kW;
  • 20%, para as unidades atendidas com tensão inferior a 69 kV, e no mês de faturamento, a demanda fora de ponta (tarifa azul) e demanda (tarifa verde) de 50 a 100 kW.

Controle de demanda

Segundo F.S Ozur (2011), O controlador de demanda é um equipamento eletrônico que tem como função principal manter a demanda de energia ativa de uma unidade consumidora, dentro de valores limites pré-determinados, atuando, se necessário, sobre alguns parte dos Controladores de Demanda controla também o fator de potência e o consumo de energia. Controlar a demanda é fundamental, não só para o consumidor diminuir seus custos com energia elétrica, mas também para a concessionária que necessita operar de forma bem dimensionada evitando interrupções ou má qualidade de fornecimento.

Exemplo de controlador de demanda

Os controladores de demanda ST8500C foram desenvolvidos pela Alfacomp para, através do monitoramento contínuo e do gerenciamento adequado de cargas, manterem a potência elétrica dentro de limites pré-estabelecidos.

A programação e operação dos equipamentos é bem simples, pois os mesmos são compatíveis com outras ferramentas importantes, como interfaces de medidores de energia padrão, segundo a norma ABNT NBR14522.

Além disso, o ST8500C mede e registra diversas grandezas elétricas (memória para 30 dias de registros), oferecendo ao usuário um exame completo do sistema de energia da sua instalação. Também é possível utilizar o equipamento em conjunto com o software ST-Conecta (software que acompanha o produto), que permite maximizar a análise e o gerenciamento dos dados.

Mais do que simples controladores de demanda de potência, os equipamentos ST8500C constituem poderosos sistemas de gerenciamento de energia elétrica.

Princípio de funcionamento

Os controladores ST8500C recebem informações contínuas da potência da carga por meio da interface serial de usuário, opto-acoplada, padronizada através da norma NBR14.522 (ABNT), disponível em medidores eletrônicos de potência. As informações, no modelo com TC´s, podem ser repassadas via conexão do barramento elétrico, com o uso de transformadores de corrente (TC X/5) e sinais de tensão. A demanda de energia elétrica da carga é calculada através de algoritmos matemáticos.

Conforme a necessidade, ou seja, sempre que a demanda projetada ficar acima do set-point, os controladores ST8500C desativam uma ou mais cargas, promovendo a sua correção. Da mesma forma, toda vez que a demanda projetada ficar abaixo do estipulado, o controlador ativa uma ou mais cargas.

Os controladores ST8500C possuem diversas características que objetivam proteger suas máquinas e equipamentos. Entre essas está o tempo de repouso, que é o tempo programado para evitar que uma carga seja religada logo após seu desligamento – o que pode danificar a máquina e diminuir a vida útil das contactoras (que conectam as cargas à rede elétrica). Os controladores também permitem programar o acionamento e desligamento das cargas com lógica inversa, isto é, desligando a saída do controlador para cargas ativas, evitando paradas por pane do controle.

Inspeção visual

Antes da instalação, proceda a uma cuidadosa inspeção visual para certificar-se de que o produto não apresenta danos causados pelo transporte.

Esquemas elétricos de ligações

Na sequência, as figuras mostram os esquemas de ligação dos controladores ST8500C.

1. Modelo com entrada por TC

ST8500C Controlador de demanda

2. Modelo com entrada opto-acoplada

ST8500C Controlador de demanda

Conexões de acionamento

ST8500C Controlador de demanda

Observações importantes na instalação do equipamento

  • No modelo com transformadores de corrente (TCs), a relação de transformação deve ser X/5A.
  • Cada acionamento da contactora deve ser protegido com um fusível individual.
  • A fiação que mede a tensão deve ser colocada em dutos separados do comando das contactoras com uma distância de, no mínimo, 10 cm.
    A fiação também não deve passar nos dutos dos cabos de potência, onde circulará a corrente da carga.
  • Tome cuidado com a tensão de alimentação e a forma de ligação das contactoras. O fio comum das contactoras deve ser diferente do utilizado
    na alimentação do controlador. Lembre que a tensão/corrente máxima de cada saída de acionamento é de 250VAC/5A.
  • A tensão máxima de alimentação do controlador, que serve para o equipamento trabalhar, é de 270VAC, enquanto a tensão de medição,
    usada para cálculos para informação no mostrador, pode ir até 600VAC.
  • No modelo opto-acoplado é necessário aplicar tensão à entrada de medição para que sejam mostrados, no menu de medidas elétricas,
    tanto o parâmetro de tensão como o de corrente. Do contrário, esses dois parâmetros serão zerados.

Atenção!

A alimentação de tensão do ST8500C pode ser de qualquer fonte, desde que se mantenha na faixa de 80 a 270 VCA.

Painel frontal do controlador de demanda

ST8500C Controlador de demanda

OBS: A iluminação do display do ST8500C (backlight) só é acionada quando uma tecla é pressionada. Caso nenhuma tecla seja pressionada no período de 3 minutos, a iluminação desligará automaticamente.

LEDs indicadores

  • OK Equipamento ligado
  • ST Aceso, indica algum alarme ativo
  • RX Indica canal serial recebendo dados
  • TX Indica canal serial transmitindo dados

REFERÊNCIA

Leia também

 

Se você busca uma forma de reduzir o espaço ocupado pelos relés no painel de automação, apresentamos aqui uma solução simples, funcional e de excelente custo-benefício. Veja o esquemático abaixo.ID2908 – Isolador a relé para 8 saídas digitais
EsID2908 – Isolador a relé para 8 saídas digitaiste dispositivo foi projetado para criar 8 saídas a relé isoladas para utilização com CLPs de saída a transistor em 24 VCC. A montagem vertical do módulo isolador permite termos 8 relés em apenas 23 mm do trilho DIN.

Componentes:

  • Diodos D9 a D16: 1N4148
  • Relés K1 a K8: DSY2Y-S-224L
  • LEDs D1 a D8: LED 3mm vermelho
  • Conector J1: STLZ1550/9-3.18H
  • Conectores J2 e J3:  STLZ 1550/8-3.18H

Na busca constante por competitividade e redução de custos, a indústria de componentes eletro-eletrônicos procura oferecer dispositivos cada dia mais compactos, viabilizando assim montagens de quadros de comando menores e mais econômicos. Boa parte da área de um painel elétrico com muitas saídas digitais é destinada aos relés. Pois bem, imagine reduzir pela metade o espaço ocupado pelos relés no quadro de comando. Considerando relés medindo 6 mm de largura, por  exemplo, 64 relés enfileirados irão ocupar 38,4 cm. Com o ID2908, 64 relés ocupam apenas 18,4 cm.

O módulo ID2908 constitui um isolador a relé para 8 saídas digitais de 24V. As bobinas dos relés tem uma ligação em comum no borne 0V. O módulo possui 8 saídas independentes e isoladas; S0 até S7. Ocupando apenas 23 mm no trilho DIN, o módulo funciona como borneira, simplificando a montagem de quadros de comando e economizando espaço. 8 LEDs indicam o estado dos relés. As conexões são por bornes destacáveis, facilitando a troca rápida de módulos.

Especificações técnicas

Tensão de acionamento 24 VCC
Capacidade de comutação 2A em 220 VCA
Indicação 8 LEDs indicam o estado dos relés
Dimensões Altura 88 x Largura 23 x Profundidade 74 mm (conectores incluídos)
Formato Placa eletrônica em suporte metálico aberto e fixação para trilho DIN

Solicite informações adicionais ou uma cotação

Veja também

Os medidores de vazão eletromagnéticos utilizam a Lei de Faraday para detectar e medir a vazão. Dentro de um transmissor de vazão eletromagnético existe uma bobina que gera um campo magnético e eletrodos que capturam o campo elétrico resultante do movimento do líquido que está sob o campo magnético.
Segundo a Lei de Faraday, movendo líquidos condutivos dentro de um campo magnético, gera-se uma força eletromotriz (voltagem). Ou seja, a velocidade do fluxo do líquido movendo dentro do campo magnético gera um campo elétrico proporcional. O campo elétrico E é proporcional a V x B x D (velocidade x campo magnético x diâmetro).


Os transmissores de vazão eletromagnéticos apresentam as seguintes características:

  • Não são afetados por temperatura, pressão, densidade ou viscosidade do líquido;
  • Detectam a vazão também em líquidos contaminados por sólidos e bolhas;
  • Não causam perda de pressão;
  • Não utilizam partes móveis e por isso são mais confiáveis;

Não podem ser utilizados em líquidos que não sejam condutivos.
A condutividade expressa a facilidade com que o líquido permite a condução da corrente elétrica. A condutividade é medida em S/cm (siemens por centímetro).  A água comum da torneira tem condutividade média de 100 a 200 μS/cm, água mineral de 500 μS/cm ou mais, e água pura de 0.1 μS/cm ou menos.

O transmissor de vazão eletromagnético TVE20 permite a medição da vazão de líquidos em tubulações de 10 a 350 milímetros de diâmetro utilizando o princípio eletromagnético baseado na Lei de Faraday.

Características principais

  • Estrutura de múltiplos eletrodos;
  • Alta precisão;
  • Sem partes móveis;
  • Ampla faixa de medição;
  • Alimentação: 85 a 265 VCA ou 18 a 36 VCC;
  • Não obstrui o fluxo do líquido medido;
  • Diversas opções de flanges;
  • Diversas opções de frequências de operação;
  • Permite detectar a direção do líquido;
  • Eletrônica resistente a surtos elétricos;

Aplicações

  • Água e esgoto;
  • Indústria química;
  • Indústria de alimentos;
  • Agricultura;
  • Tratamento de efluentes.

Especificações técnicas do transmissor de vazão TVE20

  • Tamanho: DN10 a DN350
  • Meio: Líquidos condutivos
  • Temperatura do meio: Classe E∠60°C Grau CH∠180°C
  • Precisão: 0,25% a 0,5%
  • Repetibilidade: 0,1% a 0,17%
  • Pressão da tubulação: 0,6, 1,0, 1,6, 2,5, 4,0, 6,4 MPa (ou especificado pelo cliente)
  • Indicações do display: Vazão instantânea, totalização, velocidade, taxa de vazão
  • Sinais de saída: 4 a 20mA, pulsos, RS485, Hart
  • Alimentação: 85 a 265 VCA ou 18 a 36 VCC
  • Tipo de conversor: Integrativo
  • Proteção: IP65/IP68
  • A prova de explosão: Ex deibmb IIC T3 ~ 6
  • Velocidade: 0,05 a 12 m/s
  • Revestimento:   PU (DN25 a DN500) / F4 (PTFE) (DN25 a DN1600) / F46 (FEP) (DN10 a DN200) / PFA (DN10 a 30)
  • Direção do fluxo: Direto e reverso
  • Material do eletrodo:  316L, Pt, Ta, Ti, HB, HC, WC
  • Número de eletrodos: 3 a 6 unidades
  • Material do flange: SS/CS
  • Alarme (normalmente aberto): Vazio, excitação, limite superior e limite inferior
  • Temperatura ambiente: -30°C a 60°C
  • Protocolo de comunicação:  Modbus, Hart

Faixas de medição (m3/h)

DN (mm)

Faixa de medição

Precisão

DN (mm)

Faixa de medição

Precisão

DN10 0,014 a 3,39 0,08 a 2,82 DN300 12,7 a 3052 76 a 2543
DN15 0,03 a 7,63 0,19 a 6,35 DN350 17,3 a 4154 103 a 3461
DN20 0,06 a 13,56 0,33 a 11,34 DN400 22,6 a 5425 1355 a 4521
DN25 0,09 a 21,19 0,52 a 17,66 DN450 28,6 a 6867 171 a 5722
DN32 0,14 a 34,72 0,86 a 29,93 DN500 35,3 a 8478 211 a 7065
DN40 0,23 a 54,25 1,35 a 45,21 DN600 51 a 12208 305 a 10173
DN50 0,35 a 84,78 2,12 a 70,65 DN700 69 a 16616 415 a 13847
DN65 0,6 a 143 3,58 a 119 DN800 90 a 21703 542 a 18086
DN80 0,90 a 217 5,43 a 180 DN900 114 a 27468 686 a 22890
DN100 1,41 a 339 8,48 a 282 DN1000 141 s 33912 847 a 28260
DN125 2,21 a 529 13,25 a 441 DN1200 203 a 48833 1221 a 40694
DN150 3,18 a 763 19,08 a 635 DN1400 277 a 66467 1662 a 55389
DN200 5,65 a 1356 33,91 a 1130 DN1600 361 a 86814 2171 a 72345
DN250 8,83 a 2119 52,99 a 1766 DN1800 457 a 109874 2747 a 91562

Dimensões do transmissor de vazão eletromagnético TVE20 (mm)

DN

H

L

D1

D

n-fd1

C

Pressão

10 160 260 60 90 4-f14 14 PN4.0
15 265 65 95 4-f14 14
20 272 75 105 4-f14 16
25 280 85 115 4-f14 16
32 290 100 140 4-f18 18
40 200 305 110 150 4-f18 18
50 320 125 165 4-f18 20
65 335 145 185 4-f18 20 PN1.6
80 350 160 200 8-f18 20
100 250 370 180 220 8-f18 22
125 405 210 250 8-f18 22
150 300 435 240 285 8-f22 24
200 350 495 295 340 12-f22 24
250 400 545 350 395 12-f22 26 PN1.0
300 500 595 400 445 12-f22 26
350 630 460 505 16-f22 26
400 600 685 515 565 16-f26 26
450 735 565 615 20-f26 28
500 790 620 670 20-f26 28
600 900 725 780 20-f30 34
700 700 1035 840 895 24-f30 30
800 800 1140 950 1015 24-f33 32
900 900 1245 1050 1115 28-f33 34
1000 1000 135 1160 1230 28-f36 34
25 160 280 100 140 4-f18 24 PN6.4
32 290 110 155 4-f22 24
40 200 305 125 170 4-f22 26
50 320 135 180 4-f22 26
65 340 160 205 8-f22 26
80 350 170 215 8-f22 28
100 250 375 200 250 8-f26 30
125 415 240 295 8-f30 34
150 300 485 280 345 8-f30 36
200 350 520 345 415 12-f36 42
250 400 570 400 470 12-f36 46
300 500 625 460 530 16-f36 52
350 680 525 600 16-f39 56

Como selecionar o material do eletrodo

Eletrodo

Aplicação

Não adequado para

316L Água doméstica, água industrial, água bruta, esgoto doméstico, ácidos leves, alcalinos leves, água salgada. Ácidos fortes, alcalinos fortes.
Hastelloy alloy B Ácidos não oxidantes com concentração menor que 10%, hidróxido de Sódio com concentração menor que 50%, hidróxido de amônia, ácido fosfórico, ácidos orgânicos. Ácido nítrico.
Hastelloy C Ácidos compostos (como soluções de ácido de cromo e ácido sulfúrico), sais oxidantes (como água do mar, incluindo CU+++, Fe+++). Ácido hidro clorídrico.
Titânio Sais (como cloretos de sódio e de potássio, sais de amônia, hipoclorito sódico), hidróxido de potássio < 50%, hidróxido de amônia, hidróxido de bário, soluções alcalinas. Ácido clorídrico, ácido sulfúrico, ácido fosfórico, ácido hidro fluorídrico e outros ácidos redutores.
Tântalo Ácido hidro clorídrico < 40%, ácido sulfúrico, dióxido de cloro, cloreto de ferro, ácidos hipoclóricos, cloreto de sódio, acetato de chumbo, ácido nítrico. Soluções alcalinas, ácido hidro fluorídrico.
Ouro platina Praticamente todas as soluções alcalinas. Água régia, sal de amônia.

Como selecionar o material do revestimento

Selecionar de acordo com o líquido e a temperatura.

Revestimento

Símbolo

Desempenho

Temperatura

Aplicação

Borracha CR Resistência à altas concentrações sais ácidos e básicos. ≤70oC Água doméstica e industrial, água do mar.
PTFE PTFE Estável e resistente à líquidos em ebulição, ácidos, água régia e alcalinos concentrados. ≤150oC Ácidos corrosivos, soluções salinas.
Propileno etileno fluorado F46 ou FEP Propriedades químicas equivalentes as do F4, resistência a tração superior à do F4. ≤180oC Soluções corrosivas e salina, pressões negativas.
Poliuretano PU Alta resistência ao desgaste, não adequado para ácidos. ≤70oC Lama, polpas e outros abrasivos.

Solicite informações adicionais ou uma cotação

Você sabe como funcionam as entradas analógicas 4 a 20 mA do CLP e o motivo pelo qual as mesmas são tão sensíveis?

Este artigo trata disso e propõe uma solução simples para proteger as entradas analógicas de 4 a 20 mA  do CLP.

Como funcionam a entradas analógicas 4 a 20 mA do CLP

A maioria das entrada 4 a 20 mA dos CLPs de mercado possuem um resistor de cerca de 150 a 200 ohms em sua entrada. Veja abaixo um circuito típico.SS2701 - Protetor contra surtos na entrada analógica

No exemplo da figura acima, mostramos um transmissor hidrostático de nível.

Esse tipo de sensor é muito utilizado para medir nível de água em reservatórios pertencentes ao sistema de abastecimento de água municipal.

O transmissor hidrostático de nível trabalha submerso e, por estar em contato direto com a água, é um caminho para surtos elétricos que normalmente entram pela rede e buscam a terra.

Quando um sensor hidrostático de nível queima por surto, com frequência deixa de funcionar como regulador de 4 a 20 mA e entrega na saída os 24 V sem limitação.

Seja um transmissor hidrostático de nível, um sensor de pressão, ou qualquer outro instrumento de campo que, ao invés de entregar uma corrente de 4 a 20 mA, entrega os 24 V da alimentação diretamente à entrada analógica, isso irá danifica a entrada analógico pelo excesso de tensão e corrente.

O que acontece quando o sensor entra em curto e fornece os 24 V, sem limite de corrente, à entrada analógica 4 a 20 mA?

Digamos que a entrada analógica é dotada de um resistor de 200 ohms. A corrente sobre o resistor será:

I = 24V / 200 ohms = 120 mA e a Potência sobre o resistor P = 24 V x 120 mA = 2,88 W

Os resistores utilizados nas entrada analógica dos CLP não são dimensionados para suportar essa potência e fatalmente queimam.

Solução para proteger a entrada analógica contra o excesso de corrente

A solução é simples; precisamos de um limitador de tensão e de um limitador de corrente trabalhando em conjunto.

Como limitador de tensão utilizamos o diodo TVS e como limitador de corrente utilizamos o termistor PTC.

SS2701 - Protetor contra surtos na entrada analógica

Utilizando a solução apresentada, quando o sensor de campo entra em curto, e os 24 V da fonte passam direto, o diodo TVS irá conduzir, limitando em 6 V a tensão na entrada analógica.

A corrente sobre o termistor PTC ao tentar ultrapassar os 50 mA fará o PTC aquecer e alterar sua resistência original de cerca de 2 ohms para uma resistência que limita a corrente em 50 mA.

No caso do circuito apresentado, a resistência do PTC irá alterar para cerca de: R = (24 V – 6 V) / 50 mA = 360 ohms.

Sobre o resistor de 200 ohms da entrada analógica a tensão resultante será de 6 V, e a corrente de 30 mA, resultando em uma potência máxima de 180 mW, que não é suficiente para danificar o componente.

O Termistor funciona como um fusível rearmável, pois após a substituição do sensor danificado (em curto), e tendo cessada a corrente excessiva, o PTC irá esfriar e voltar a ter apenas 2 ohms de resistência.

O PTC selecionado é do tipo especialmente desenvolvido para proteção contra sobre corrente. A linha Resettable Fuses – Multifuse® PPTC da Bourns é um exemplo desses componentes.

O diodo TVS é um diodo rápido especialmente desenvolvido para absorver surtos de sobretensão e muito utilizado em circuitos DPS (Dispositivo de Proteção Contra Surtos).

Circuito protetor completo para entradas analógicas 4 a 20 mA de CLP

Apresentamos agora um circuito completo de um DPS para a proteção de entradas 4 a 20 mA.

SS2701 - Protetor contra surtos na entrada analógica

O circuito apresentado protege não só canal analógico, mas também a alimentação 24 V que é fornecida ao sensor de campo.

A proteção se dá em três estágios, por meio dos três tipos de supressores de sobretensão:

  • Centelhador a gás;
  • Varistor de óxido metálico;
  • Diodo TVS.

Os indutores que separam cada etapa da proteção ajudam a retardar e amortecer o surto.

Circuito impresso do DPS para entradas analógicas 4 a 20 mA

SS2701 - Protetor contra surtos na entrada analógica

QTD         DESCRIÇÃO

  • 4              CN1, CN2 – AKZ-700 – 2
  • 1              D1 – P6KE30A  (TVS)
  • 1              D2 – P6KE6A  (TVS)
  • 1              F1 – Fusível rearmável (PTC) 50 mA
  • 1              F2 – Fusível rearmável (PTC) 50 mA
  • 4              L1, L2, L3, L4 – Indutor 100uH
  • 2              RV1, RV2 – S10K30 (Varistor)
  • 2              SA1, SA2 – 75V (centelhador a gás)
  • 1              Espaçador 15 mm
  • 1              Pé Fêmea RS75
  • 1              Pé Macho RS75
  • 1              PCI  SS2701

Solicite informações adicionais ou uma cotação do protetor de entradas analógicas

O módulo SS2702 constitui um protetor de canais analógicos contra surtos elétricos causados por sobre tensões na fiação de campo. Montado em circuito impresso e alojado em suporte plástico para fixação em trilho DIN, o módulo incorpora cinco circuitos de proteção contra surtos, sendo um para evitar que surtos danifiquem o circuito de alimentação em 24V e os outros quatro para proteção de canais analógicos. Cada circuito é dotado de fusível, centelhador a gás, varistor de óxido metálico, diodo supressor e indutores. O módulo substitui com vantagens de custo, espaço e tempo de montagem, um arranjo de quatro protetores, cinco fusíveis e dezesseis bornes. Um dos diferenciais do produto é o fato de ser o único do mercado dotado de fusíveis rearmáveis (PTC).

Saiba mais 

O kit rádio enlace 60 km permite comunicar equipamentos em RS232 e RS485 em até 60 km quando há visada direta entre os pontos. O kit reúne os equipamento e materiais necessários para estabelecer a comunicação serial entre dois pontos. O padrão de comunicação pode ser em RS232 ou RS485. A velocidade serial admitida é de 1.200 a 230.400 bps. O alcance do enlace é de até 60 km com visada. Exemplo de aplicação: comunicação entre CLPs.

Veja abaixo a composição do kit rádio enlace 60 km.


Composição do kit rádio enlace 60 km

Exemplo de aplicação do kit de rádio enlace 60 km

A figura a seguir apresenta um exemplo de aplicação do kit. No exemplo, um computador rodando um software supervisório supervisiona e controle um CLP distante até 60 km com visada direta.

Descrição do rádio modem P900

O rádio modem P900 com tecnologia spread spectrum possui conectores e LEDs que facilitam a instalação e utilização.

O gabinete robusto, a larga faixa de temperatura de operação e o baixo custo tornam o rádio modem P900 a solução ideal para o controle e monitoração de estações remotas de telemetria e para todo o tipo de aplicação industrial onde a comunicação serial é necessária.

O P900 incorpora ainda a capacidade de compor redes Mesh de última geração com a capacidade de restabelecimento automático de rotas de comunicação (Self Healing).

Características do rádio modem P900 

  • Permite até 276 kbps
  • Baixo custo
  • Ponto a ponto, Ponto Multiponto e Mesh
  • Rede Mesh com reencaminhamento automático
  • Store & Forward – o rádio funciona como repetidora
  • Configuração em Mesh como mestre, repetidor ou unidade terminal
  • Temperatura de operação (-55 C a +85 C)
  • Potência de saída ajustável: 100mW-1W
  • Dimensões reduzidas
  • Baixo consumo em modo adormecido
  • Filtro de quatro estágios proporciona alta rejeição a ruido e interferência
  • Correção de erro (FEC), 32 bits de CRC, e 128-bit AES

Aplicações do rádio modem P900

  • Medição de utilities
  • Telemetria de unidades remotas
  • Sensoriamento de eletricidade, óleo e gás
  • Comunicação com painéis digitais de sinalização
  • Comunicação serial em ambiente industrial

Certificação

O rádio modem P900 possui certificação Anatel.

Especificações técnicas

  • Faixa de operação: 902-928 MHz
  • Método de espalhamento: Saltos em frequência
  • Algoritmos de detecção de erro: Hamming, BCH, Golay, Reed-Solomon
  • Detecção de erro: CRC 32 bits, ARQ
  • Encriptação: Opcional (veja –AES option)
  • Alcance: 60 km
  • Sensibilidade:
    • -114 dBm em 57.6 kbps
    • -112 dBm em 115.2 kbps
    • -109 dBm em 172.8 kbps
    • -107 dBm em 230.4 kbps
  • Potência de saída: 100 mW a 1 W (20 a 30 dBm)
  • Interface serial: RS232/485 (Selecionável)
  • Velocidade serial: até 230.4 kbps assíncrono
  • Velocidade na comunicação RF: 57.6 a 276 kbps
  • Modos de operação: Mesh, Auto Routing, Store and For-ward, Self Healing, Packet Routing Modes
  • Interface: RxD1, TxD1, RTS, CTS DCD, DSR, DTR, RxD2, TxD2, RSSI LEDs, Tx/Rx LEDs, Reset, Config, Wake-up, RSmode, 4 entradas/saídas digitais, 1 entrada analógica, 1 saída analógica
  • Diagnóstico remoto: tensão da bateria, temperatura, RSSI, estatística de pacotes
  • Alimentação: 9 a 30 VCC
  • Consumo:
    • Rx: 45 mA a 98 mA
    • Tx : 1000 mA ta 1400 mA
  • Conectores:
    • Antena: SMA fêmea
    • Dados: DB-9F
  • Temperatura de operação: -55 C – +85 C
  • Peso: 120 g
  • Dimensões: 46 mm x 66 mm x 25 mm

Solicite mais informações ou uma cotação

Leia também

Medidor de vazão ultrassônico – o que é?

O medidor de vazão ultrassônico mede a velocidade de um fluido com ultrassom para calcular a vazão do líquido. Ele calcula a diferença no tempo de trânsito medido entre os pulsos de ultrassom que se propagam na direção e contra a direção do fluxo ou medindo a mudança de frequência devida ao efeito Doppler.TDS-100H Medidor ultrassônico de vazão portátil

Medidor de vazão ultrassônico – como funciona?

O medidor ultrassônico de vazão é um tipo de medidor de vazão que mede a velocidade de um fluido com ultrassom para calcular a vazão do líquido. Usando transdutores ultrassônicos, o medidor de vazão pode medir a velocidade média ao longo do caminho de um feixe de ultrassom emitido, calculando a média da diferença no tempo de trânsito medido entre os pulsos de ultrassom que se propagam na direção e contra a direção do fluxo ou medindo a mudança de frequência devida ao efeito Doppler. Os medidores de vazão ultrassônicos são afetados pelas propriedades acústicas do fluido e podem ser afetados pela temperatura, densidade, viscosidade e partículas suspensas. Os medidores de vazão ultrassônicos apresentam ótima relação custo benefício pois não utilizam peças móveis, são fáceis de instalar, não demandam seccionar ou furar a tubulação, e são de fácil manutenção.

Tipos de medidores de vazão ultrassônicos

Existem três tipos diferentes de medidores de vazão ultrassônicos. Os medidores de vazão de transmissão por tempo de transito – intrusivo e clamp-on (não intrusivo). Os medidores de vazão ultrassônicos por efeito Doppler são chamados de medidores de vazão de reflexão ou Doppler. O terceiro tipo é o medidor de vazão de canal aberto.

Medidor de vazão ultrassônico por tempo de trânsito

Os medidores ultrassônicos de vazão medem o tempo de trânsito dos pulsos ultrassônicos que se propagam com e contra a direção do fluxo. Essa diferença de tempo é uma medida para a velocidade média do fluido ao longo do caminho do feixe ultrassônico. Usando os tempos de trânsito absolutos Tup e Tdown, tanto a velocidade média do fluido v quanto a velocidade do som c podem ser calculados. Usando esses dois tempos de trânsito, a distância entre os transdutores de recepção e transmissão L e o ângulo de inclinação α , se assumirmos que o som tem que ir contra o fluxo ao subir e ao longo do fluxo ao retornar para baixo, pode-se escrever as seguintes equações a partir da definição de velocidade:

TDS-100H Medidor ultrassônico de vazão portátil

Somando e subtraindo as equações acima obtemos,

TDS-100H Medidor ultrassônico de vazão portátil

onde v é a velocidade média do fluido ao longo do caminho do som e c é a velocidade do som.

Medidores de vazão ultrassônico por efeito Doppler

Outro método na medição de vazão ultrassônica é o uso do deslocamento Doppler que resulta da reflexão de um feixe ultrassônico em materiais refletivos, como partículas sólidas ou bolhas de ar aprisionadas em um fluido em fluxo, ou a turbulência do próprio fluido, se o líquido está limpo. Os medidores de vazão Doppler são usados ​​para lamas, líquidos com bolhas, gases com partículas refletoras de som.

Este tipo de medidor de vazão também pode ser usado para medir a taxa de fluxo sanguíneo, passando um feixe ultrassônico através dos tecidos, refletindo em uma placa, invertendo a direção do feixe e repetindo a medição, o volume do fluxo sanguíneo pode ser estimado. A frequência do feixe transmitido é afetada pelo movimento do sangue no vaso e, comparando a frequência do feixe a montante versus a jusante, permitindo a medição do fluxo de sangue através do vaso. A diferença entre as duas frequências é uma medida do fluxo de volume real. Um sensor de feixe largo também pode ser usado para medir o fluxo independente da área da seção transversal do vaso sanguíneo.

Medidores de vazão ultrassônico de canal aberto

Neste caso, o elemento ultrassônico está na verdade medindo a altura da água no canal aberto; com base na geometria do canal, o fluxo pode ser determinado a partir da altura. O sensor ultrassônico geralmente também possui um sensor de temperatura porque a velocidade do som no ar é afetada pela temperatura.

TDS-100H Medidor ultrassônico de vazão portátil

O medidor ultrassônico de vazão TDS-100H foi projetado para medir a velocidade do fluido dentro de uma tubulação. Os transdutores são do tipo clamp-on sem contato, o que proporcionará facilidade de instalação, operação e manutenção.

O TDS-100H funciona por tempo de trânsito e utiliza dois transdutores que funcionam como transmissores e receptores ultrassônicos. Os transdutores são fixados na parte externa de um tubo fechado a uma distância específica um do outro. Os transdutores podem ser montados em método V, onde o som atravessa o tubo duas vezes, ou pelo método W, onde o som atravessa o tubo quatro vezes, ou em método Z, onde os transdutores são montados em lados opostos do tubo e o som atravessa o tubo uma vez. Esta seleção do método de montagem depende das características do tubo e do líquido. O medidor de vazão opera transmitindo e recebendo alternadamente uma sequência de emissões de energia sonora modulada em frequência entre os dois transdutores e medindo o tempo de trânsito que leva para o som viajar entre os dois transdutores. A diferença no tempo de trânsito medido está direta e exatamente relacionada à velocidade do líquido na tubulação, conforme mostrado a figura.

TDS-100H Medidor ultrassônico de vazão portátil

 

Onde:

  • θ é o ângulo na direção do fluxo
  • M é o tempo de trânsito do feixe de ultrassom
  • D é diâmetro da tubulação
  • Tup é o tempo de trânsito do transdutor upstream até o transdutor downstream
  • Tdown é o tempo de trânsito do transdutor downstream até o transdutor upstream
  • ΔT=Tup -Tdown

Módulo principal do medidor de vazão

TDS-100H Medidor ultrassônico de vazão portátil

 

TDS-100H Medidor ultrassônico de vazão portátil TDS-100H Medidor ultrassônico de vazão portátil

Transdutores ultrassônicos

TDS-100H Medidor ultrassônico de vazão portátil

Aplicações do medidor de vazão ultrassônico

O medidor de vazão TDS-100H pode ser aplicado em uma ampla gama de medições em tubulações de 20 a 6.000 mm [0,5 a 200 polegadas]. É possível medir a vazão de diversos tipos de líquidos , como: líquidos puros, água potável, produtos químicos, esgoto bruto, água tratada, água de resfriamento, água bruta, efluente, etc. O medidor de vazão não é afetado pela pressão do sistema, sujeira ou desgastes. Os transdutores padrão são classificados para aplicações em até 110 graus centígrados. Temperaturas mais altas podem ser avaliadas sob consulta.

Retentividade dos dados e relógio de tempo real

Todos os valores de configuração inseridos pelo usuário são retidos na memória flash não volátil integrada, que pode armazená-los por mais de 100 anos, mesmo se a energia for perdida ou desligada. Para evitar alterações de configuração inadvertidas ou reinicializações do totalizador, a programação do instrumento é protegida por senha.

O instrumento é dotado de relógio de tempo real que permite acumular valores de vazão instantânea e de volumes totalizados formando um registro de valores no tempo. Ele continua operando enquanto a tensão da bateria for superior a 1,5V. Em caso de falha da bateria, o registro de dados não é garantido. O usuário deve reinserir os valores de tempo adequados caso a bateria fique totalmente esgotada. Um valor de tempo impróprio não afeta outras funções além dos registros no tempo.

Especificações técnicas do produto

Linearidade 0.5%
Repeatibilidade 0.2%
Precisão +1%
Tempo de resposta 0-999 segundos ( configurável)
Velocidade +32 m/s
Diâmetro da tubulação 20mm-6000mm
Unidade de medida Metros, pés, metros cúbicos, litros, pés cúbicos, galões USA, galões Ingleses, Barril de óle, Barril líquido, imperial liquid barrel, milhões de galões, configurável.
Totalizador 7 dígitos, positivo e negativo.
Tipos de líquido Virtualmente qualquer tipo de líquido
Segurança Senha de acesso para ajustes.
Display 4×16 para caracteres Inglês, 4×8 para caracteres chineses
Interface serial RS-232C, baud rate: de 75 a 57600 bps.  Protocolo próprio compatível com medidores de vazão FUJI. Outros protocolos sob consulta.
Transdutores Modelo M1 padrão, outros modelos sob consulta.
Comprimento dos cabos dos trandutores Padrão 2 x 10 metros.
Fonte de alimentação 3 baterias recarregáveis AAA Ni-H internas. 10 horas de operação. Carregador 100V-240VAC.
Data Logger Data logger interno para até 2000 registros de dados.
Totalizador manual Totalizador de 7 dígitos com zeramento pelo teclado.
Material do gabinete ABS
Dimensões do módulo portátil 100 x 66 x 20 mm
Peso do módulo portátil 514g (1.2 libras) baterias.

Composição do conjunto

O medidor de vazão é fornecido com acessórios e maleta.

TDS-100H Medidor ultrassônico de vazão portátil

TDS-100H Medidor ultrassônico de vazão portátil TDS-100H Medidor ultrassônico de vazão portátil

Leia também

O que é a TELEMETRIA DE ÁGUA E ESGOTO com LoraWan?

Trata-se de um sistema eletrônico de automação, monitoração e controle dos reservatórios e estações elevatórias de água e esgoto, ETAs (Estações de Tratamento de Água), ETEs (Estações de Tratamento de Esgoto) e demais pontos de interesse como Boosters (Estações de Pressurização), VRPs (Válvulas Reguladoras de Pressão) e pontos de medição de pressão e vazão da rede de distribuição de água tratada. Todo o controle se dá no CCO (Centro de Controle e Operação).

Por que implantar a telemetria com LoraWan?

Em um município sem sistema de telemetria, é a população que avisa a companhia de água e esgoto quando ocorre uma falha no abastecimento.

O sistema de automação e telemetria com LoraWan é necessário para:

  • Garantir o abastecimento da população;
  • Monitorar em tempo real o funcionamento de estações elevatórias, reservatórios, medidores de vazão e demais dispositivos elétricos e hidráulicos do sistema;
  • Armazenar e apresentar dados históricos sobre a qualidade do abastecimento;
  • Alarmar vazamentos, falhas de operação, falhas de equipamentos, intrusões, valores anormais de níveis, pressões e vazões;
  • Prevenir e minimizar perdas;
  • Enfim, garantir a qualidade dos serviços prestados.

O que é a tecnologia LoraWan?

LoRa é uma tecnologia sem fio, assim como o Wi-Fi, LTE, NB-IoT, entre outras. Seu potencial é infinito e foi criado para sua aplicação em IoT. LoRa deriva de (Long Range wireless communication) – Comunicação sem fio de longo alcance. Entre muitas de suas vantagens está a ampla faixa de cobertura e o baixo consumo de energia que proporciona. É a opção perfeita para soluções que requerem baixa largura de banda de dados e operação autônoma de longa duração, como é o caso da telemetria do saneamento.

O que é LoraWAN?

LoraWAN é o protocolo de rede que utiliza a tecnologia Lora. Esse protocolo é a camada superior da comunicação LoRa, e utiliza Media Access Control (MAC). LoraWAN é a camada de software que define como os dispositivos conectados usam a tecnologia LoRa. LoraWAN define os formatos de mensagem e a forma como as mensagens são trocadas entre os componentes da rede.

Como funciona a telemetria do saneamento com a tecnologia LoraWan?

O sistema de telemetria é composto por unidades remotas e por um CCO (Centro de Controle e Operação.

Dotado de computadores e monitores, o CCO permite que a equipe de operação supervisione e controle o funcionamento de todo o sistema de abastecimento de água do município. Do centro de operações é possível comandar de forma automática e manual o funcionamento de elevatórias, reservatórios, boosters, válvulas, comportas, macro medidores de vazão e qualquer outro dispositivo eletromecânico. Toda a comunicação se dá via rádio.

A comunicação entre as unidades remotas e CCO se pela aplicação de gateways Lora que transmitem e recebem dados da nuvem LoraWAN, através de concentradores de comunicação públicos ou privados.

Unidade remota de telemetria de reservatório com LoraWan

A forma mais usual para garantir o abastecimento de água em um bairro ou região de um município consiste em construir reservatórios em pontos elevados da área atendida, ou construir reservatório elevados quando a região é plana. A água é conduzida aos pontos de consumo por gravidade e o sistema de abastecimento municipal tem como missão, manter os reservatórios abastecidos.

Unidade remota de telemetria de elevatória com LoraWan

Cabe à estação elevatória de água a função de manter o reservatório abastecido. Para tanto, a informação do nível do reservatório deve ser transmitida à elevatória para que essa, por sua vez, comande o funcionamento dos grupos moto bombas de maneira a manter o reservatório sempre com o nível dentro dos níveis predefinidos de operação.

A informação de nível de cada reservatório é repassada à sua respectiva estação elevatória pelo sistema da comunicação via rádio, centralizado no CCO.

Nesse tipo de configuração o reservatório terá dois níveis (set points) pré-definidos pela operação:

  • Nível de liga: O nível de liga é mais baixo que o nível de desliga e é aquele nível, que quando atingido, indica para a lógica de comando da elevatória que o grupo moto-bomba deve ser ligado.
  • Nível de desliga: O nível de desliga é mais alto que o nível de liga e é aquele nível, que quando atingido, indica para a lógica de comando da elevatória que o grupo moto-bomba deve ser desligado.

A tecnologia LoraWan na telemetria do saneamento

A figura acima apresenta uma topologia típica de uma elevatória de água tratada  de um sistema de distribuição de água tratada municipal. O diagrama mostra os componentes básicos de uma elevatória composta por dois conjuntos moto bomba, principal e reserva, e apresenta também o reservatório abastecido por essa elevatória, que pode estar distante quilômetros da elevatória.

Painel de telemetria com LoraWan

A figura a seguir mostra um exemplo de unidade remota de telemetria utilizada na automação da estação elevatória e reservatórios.

A tecnologia LoraWan na telemetria do saneamento

RAK7431 – Rádio modem LoraWan RS485

RAK7431 - Rádio modem LoraWan RS485

RAK7431 – Rádio modem LoraWan RS485

RAK7431 WisNode Bridge Serial é um conversor RS485 para LoRaWAN projetado para aplicações industriais. O dispositivo retransmite dados ModBUS usando a rede LoRaWAN como meio de transmissão sem fio de e para os dispositivos finais.

O RAK7431 pode operar em todas as bandas LoRaWAN dentro dos parâmetros padrão definidos pela LoRa Alliance. Seu alcance em ambiente aberto é de mais de 15 km e em casos industriais, onde existem obstruções pesadas no caminho do sinal de RF, o desempenho é melhorado em comparação aos sistemas sem fio convencionais devido às características do LoRa como técnica de modulação. Isso permite uma qualidade de sinal consistentemente boa dentro dos limites de grandes fábricas, escritórios densamente povoados, armazéns, etc.

Estes dispositivos compatíveis com RS485 podem endereçar até 16 nós terminais de clientes. A conversão de e para estruturas LoRa é perfeita e permite controle e monitoramento em tempo real de vários dispositivos RS485, para acessar e controlar os nós terminais RS485.

Plataforma Eagle IoT industrial

Eagle - Plataforma IoT industrial

É um conjunto de soluções de hardware e software com a tecnologia Internet das Coisas (IoT) e foco na Gestão de Utilidades e Gestão de Ativos. A Plataforma Eagle IoT industrial foi desenvolvida para:

  • Redução de Custos Operacional;
  • Manutenção preventiva e preditiva;
  • Disponibilização de informações para a tomada de decisão.

A solução permite coletar informação em tempo real, a baixo custo e com agilidade e flexibilidade, para ganho de eficiência.

Áreas de aplicação da Plataforma Eagle IoT industrial

  • Grupos geradores;
  • Usinas solares;
  • Energia;
  • Iluminação;
  • Saneamento;
  • Climatização;
  • No-breaks;
  • Sistemas de aquecimento;
  • Gestão de utilidades.

Topologia da Plataforma Eagle IoT Industrial

Eagle - Plataforma IoT industrial

Gateways IG-8K e IG-9K

Eagle - Plataforma IoT industrialOs gateways Eagle são gateways WIFI/Ethernet/Celular para comunicação com equipamentos dotados de comunicação MODBUS e publicação dos dados coletados junto a eles a um broker MQTT.

Os mesmos podem operar, também, em modo Transparente (Bridge) em conjunto com sistemas on-premise, tornando bidirecional a comunicação no parque instalado, bem como coletar informações medidores de energia para posterior publicação.

Os gateways possuem FOTA (Firmware Over-The-Air ), possibilitando atualização remota sem necessidade de cabos e softwares de programação, auxiliando na manutenção à distância, de todos os gateways instalados em campo.

Conectividade

WiFi (802.11 b/g/n) – Utilizando antena externa 1, é possível estabelecer conexão sem fios à redes locais utilizando IP Fixo ou Dinâmico (DHCP).
Fast Ethernet (100Mbps) – Através do conector RJ45, o gateway pode se conectar a uma rede Ethernet cabeada, obtendo IP Fixo ou Dinâmico (DHCP).
Rede Celular (LTE, CAT-M1, NBIoT, 2G, 4G e pronto para o 5G) – IG-9k/M possui conexão com redes celulares, sendo capaz de utilizar os mesmos protocolos das redes WiFi e ETH.

Leia também

FENASAN 2022 acontece de 13 a 15 de setembro no Expo Center Norte – São Paulo – SP Promovida há 33 anos consecutivos pela AESabesp – Associação dos Engenheiros da Sabesp, o Encontro Técnico da AESabesp – Congresso Nacional de Saneamento e Meio Ambiente é considerada como o maior evento do setor na América Latina. […]

Os medidores de vazão eletromagnéticos utilizam a Lei de Faraday para detectar e medir a vazão. Dentro de um transmissor de vazão eletromagnético existe uma bobina que gera um campo magnético e eletrodos que capturam o campo elétrico resultante do movimento do líquido que está sob o campo magnético. Segundo a Lei de Faraday, movendo […]

ASSEMAE – Associação Nacional dos Serviços Municipais de Saneamento ASSEMAE é uma organização não governamental sem fins lucrativos, criada em 1984. A Entidade busca o fortalecimento e o desenvolvimento da capacidade administrativa, técnica e financeira dos serviços municipais de saneamento responsáveis pelos sistemas de abastecimento de água, esgotamento sanitário, manejo dos resíduos sólidos e drenagem […]

Tubo de Pitot

O que é a pitometria? A Pitometria é uma técnica de medição de vazão em tubulações através da medição da pressão diferencial. A técnica leva o nome do físico Henri Pitot que desenvolveu um instrumento chamado Tubo de Pitot. Como funciona o Tubo de Pitot na medição de vazão? O Tubo de Pitot, também conhecido […]

TDS-100H Medidor ultrassônico de vazão portátil

Medidor de vazão ultrassônico – o que é? O medidor de vazão ultrassônico mede a velocidade de um fluido com ultrassom para calcular a vazão do líquido. Ele calcula a diferença no tempo de trânsito medido entre os pulsos de ultrassom que se propagam na direção e contra a direção do fluxo ou medindo a […]

A tecnologia LoraWan na telemetria do saneamento

O que é a TELEMETRIA DE ÁGUA E ESGOTO com LoraWan? Trata-se de um sistema eletrônico de automação, monitoração e controle dos reservatórios e estações elevatórias de água e esgoto, ETAs (Estações de Tratamento de Água), ETEs (Estações de Tratamento de Esgoto) e demais pontos de interesse como Boosters (Estações de Pressurização), VRPs (Válvulas Reguladoras […]

Baseado no e-book “Solar Pumping – The Basics“ – World Bank. 2018. “Solar Pumping: The Basics.” World Bank, Washington, DC. O que é bombeamento solar de água? Chamamos de bombeamento solar de água o processo de recalcar água utilizando a energia solar captada por painéis fotovoltaicos (solares) para alimentar os motores das bombas. Nos últimos […]

SIMAE DE JOAÇABA – 20 ANOS DE TELEMETRIA DO SANEAMENTO Queremos te contar uma história real sobre um sistema de telemetria do saneamento que funciona há mais de vinte anos nas cidades de Joaçaba, Herval d’Oeste e Luzerna no estado de Santa Catarina. Este vídeo é uma homenagem às pessoas do SIMAE de Joaçaba que […]

Telemetria de água e esgoto
SEMAE DE SÃO LEOPOLDO - TELEMETRIA

Inaugurado em Dezembro de 2012 pelo prefeito Ary Vanazzi e pelo diretor geral do SEMAE, Anderson Etter, o sistema de telemetria da distribuição de água da cidade de São Leopoldo/RS demonstrou ser uma ferramenta fundamental na garantia da qualidade do abastecimento de água e permitiu a redução das perdas. O centro de controle e operação, […]

SAAE MCR - Telas do supervisório

Solução Elipse E3 monitora, em tempo real, um total de 31 estações remotas de saneamento, entre poços de captação, elevatórias de água tratada, captações, reservatórios e boosters no SAAE de Marechal Cândido Rondon (PR). Necessidade do SAAE O SAAE (Serviço Autônomo de Água e Esgoto) é uma autarquia municipal responsável por executar e explorar os […]

ID3018 – Sensor de nível 4 estágios

Sensor de nível 4 estágios ID3018 O sensor de nível ID3018 permite ler o nível de reservatórios utilizando 5 eletrodos que ficam mergulhados na água. Funcionamento do sensor de nível  Os eletrodos devem ser conectados ao borne de Entradas. O eletrodo GND deve ser posicionado na posição mais inferior do reservatório, preferencialmente sempre mergulhado no […]

Princípio de funcionamento do medidor ultrassônico de nível Ultrassom é o som em frequência superior à que o ouvido humano pode escutar. O ouvido humano consegue escutar até 20 kHz, são consideradas ultrassônicas as frequências superiores aos 20 kHz. Ondas ultrassônicas são utilizadas na indústria para medir o nível de líquidos e sólidos sem a […]

Este artigo é o terceiro da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e […]

Telemetria de água e esgoto

Este artigo é o quarto da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e […]

Este artigo é o quinto da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e […]

Este artigo é o quarto da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar […]

SCADA para saneamento

Este artigo sobre SCADA para o saneamento – Software supervisório, para controle e aquisição de dados – para a telemetria do saneamento é o oitavo da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações […]

Projeto de automação e telemetria de uma estação elevatória de água tratada Este artigo contendo o Projeto de automação e telemetria de uma elevatória de água tratada é o nono da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água […]

Monte sua remota de telemetria de reservatório com baixo custo e resultados excelentes utilizando as interfaces Modbus IM2020. Telemetria de reservatório com a interface Modbus IM2020 Veja como monitorar o nível e a vazão do reservatório de forma simples e com baixo custo. Utilizando este kit você economiza e fica proprietário do seu sistema. O […]

O que é o Protocolo MQTT? O MQTT é um padrão de protocolo de mensagens para a Internet das Coisas (IoT). Ele foi projetado para o transporte de mensagens de publicação/assinatura extremamente leve, ideal para conectar dispositivos utilizando código reduzido e largura de banda de rede mínima. O protocolo MQTT hoje é usado em uma […]

Quando iniciei minha jornada na automação industrial há 28 anos, alguns modelos de CLP ainda utilizavam memórias EPROM. Ou seja, era necessário escrever o programa, compilar, gravar a EPROM, inserir a EPROM no soquete e testar a alteração. Eu costumava ter meia dúzia de EPROMs no apagador para ir alterando o programa, gravando e testando. […]

Tutorial – Treinamento básico no Haiwell Cloud SCADA Este Tutorial serve como apoio ao Módulo de Treinamento para execução e programação do Haiwell Cloud SCADA. Com ele, você acompanhará o conteúdo do curso. No Treinamento é apresentado um estudo de caso que simula uma aplicação real, um sistema de supervisão e controle. A sequência de aprendizado […]

Introdução O Brasil vive, há anos, em um cenário crítico em termos de abastecimento de água e energia. Resultado de um modelo econômico que incentivou o consumo e não o investimento, estamos sempre sob a ameaça do colapso no abastecimento de energia elétrica. De outro lado, fruto de fenômenos climáticos, agravado pela falta de políticas […]

O que é o insensibilizador eletrônico de aves e suínos? A insensibilização eletrônica tem como objetivo provocar no animal um estado cerebral de perda dos sentidos, contudo sem a perda das funções vitais. Uma insensibilização de boa qualidade resulta em um estado de atordoamento em que o animal fica imóvel, e após alguns segundos, se […]

Baseado no e-book “Solar Pumping – The Basics“ – World Bank. 2018. “Solar Pumping: The Basics.” World Bank, Washington, DC. O que é bombeamento solar de água? Chamamos de bombeamento solar de água o processo de recalcar água utilizando a energia solar captada por painéis fotovoltaicos (solares) para alimentar os motores das bombas. Nos últimos […]

O que é um inversor de frequência? O inversor de frequência é o nome popular que damos aos conversor de frequência. É um dispositivo elétrico que converte uma corrente com uma frequência em uma corrente com outra frequência. A tensão é normalmente a mesma antes e depois da conversão de frequência. Os conversores de frequência […]

Seu sistema de telemetria está desatualizado, obsoleto e de difícil e cara manutenção? Leia este artigo e saiba o que fazer para colocar sua telemetria em dia! Atualização tecnológica da telemetria do saneamento A atualização tecnológica da telemetria de água e esgoto de um município visa renovar o sistema de telemetria de forma a torná-lo […]

Qual é a diferença entre LoRa® e LoRaWAN®? LoRa é uma tecnologia sem fio, enquanto LoRaWAN é um protocolo de rede. Para saber mais, leia o artigo abaixo. O que é a tecnologia Lora? LoRa é uma tecnologia sem fio, assim como o Wi-Fi, LTE, NB-IoT, entre outras. Seu potencial é infinito e foi criado para […]

Uma abordagem prática voltada para sistemas de automação, telemetria e SCADA O cálculo de rádio enlace avalia a viabilidade de comunicação entre dois pontos. Se você já teve que interligar equipamentos seriais que comunicam via RS232 ou RS485 em distâncias ou situações em que cabos seriais eram inviáveis, este artigo é para você. Utilizar rádio […]

FENSAN 2021 acontece de 14 a 16 de setembro no Expo Center Norte – São Paulo – SP Promovida há 32 anos consecutivos pela AESabesp – Associação dos Engenheiros da Sabesp, o Encontro Técnico da AESabesp – Congresso Nacional de Saneamento e Meio Ambiente é considerada como o maior evento do setor na América Latina. […]

Este artigo explica como implementar um circuito que permite ler até oito sinais analógicos de 4 a 20 mA na entrada digital de um CLP que não possui entradas analógicas. A solução apresentada possui excelente custo benefício. Antes de apresentarmos o circuito, faremos algumas definições de base como segue. O que são sinais analógicos Um […]

Solução Elipse E3 monitora, em tempo real, um total de 31 estações remotas de saneamento, entre poços de captação, elevatórias de água tratada, captações, reservatórios e boosters no SAAE de Marechal Cândido Rondon (PR). Necessidade do SAAE O SAAE (Serviço Autônomo de Água e Esgoto) é uma autarquia municipal responsável por executar e explorar os […]

CLP – Controlador lógico programável O Controlador Lógico Programável é um computador robusto projetado para o controle de processos industriais e, portanto, utilizado em automação industrial, em inglês: PLC – Programmable Logic Controller. Esses controladores podem automatizar processos específicos, máquinas, ou linhas de produção. O CLP monitora o estado dos dispositivos de entrada, toma decisões […]

Fonte: “O Verdadeiro Medidor Magnético de Vazão tipo Inserção” – GUSTAVO DE ARAÚJO LAMON – Belo Horizonte Um pouco da história da medição de vazão A vazão é considerada a variável de processo mais importante nas empresas de saneamento e uma das mais importantes em processos industriais. De acordo com a História, as primeiras medições […]

Sensor de nível 4 estágios ID3018 O sensor de nível ID3018 permite ler o nível de reservatórios utilizando 5 eletrodos que ficam mergulhados na água. Funcionamento do sensor de nível  Os eletrodos devem ser conectados ao borne de Entradas. O eletrodo GND deve ser posicionado na posição mais inferior do reservatório, preferencialmente sempre mergulhado no […]

Princípio de funcionamento do medidor ultrassônico de nível Ultrassom é o som em frequência superior à que o ouvido humano pode escutar. O ouvido humano consegue escutar até 20 kHz, são consideradas ultrassônicas as frequências superiores aos 20 kHz. Ondas ultrassônicas são utilizadas na indústria para medir o nível de líquidos e sólidos sem a […]

Este artigo é o terceiro da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e […]

Este artigo é o quarto da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e […]

Este artigo é o quinto da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e […]

Este artigo é o quarto da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar […]

Este artigo sobre SCADA para o saneamento – Software supervisório, para controle e aquisição de dados – para a telemetria do saneamento é o oitavo da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações […]

Projeto de automação e telemetria de uma estação elevatória de água tratada Este artigo contendo o Projeto de automação e telemetria de uma elevatória de água tratada é o nono da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água […]

Projeto de automação e telemetria de um reservatório de água tratada Este artigo contendo o Projeto de automação e telemetria de um reservatório de água tratada é o décimo da série “Tudo sobre telemetria do abastecimento municipal de água“. Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, […]