Tutoriais e cursos

Solução Elipse E3 monitora, em tempo real, um total de 31 estações remotas de saneamento, entre poços de captação, elevatórias de água tratada, captações, reservatórios e boosters no SAAE de Marechal Cândido Rondon (PR).

Necessidade do SAAE

O SAAE (Serviço Autônomo de Água e Esgoto) é uma autarquia municipal responsável por executar e explorar os serviços de água e esgoto no município de Marechal Cândido Rondon no Paraná. Para automatizar o sistema de abastecimento de água do município o SAAE decidiu utilizar o Elipse E3.

A grande facilidade com que permite realizar ajustes, melhorias e expansões foi o fator determinante para a escolha da solução desenvolvida pela Alfacomp utilizando o Elipse E3.

SAAE MCR - Telas do supervisório

Figura 1. Tela inicial da aplicação do E3 no SAAE

Solução buscada pelo SAAE

O E3 permite monitorar e executar comandos sobre as 31 unidades do sistema de abastecimento de água de Marechal Cândido Rondon. Para isto, disponibiliza uma tela destinada a cada unidade, na qual é possível supervisionar os níveis, vazões, pressões, tensões e correntes medidos e registrados pelos CLPs dos painéis de telemetria instalados em cada estação remota.

SAAE MCR - Telas do supervisórioFigura 2. Controle de uma das unidades que compõem a rede de abastecimento do SAAE

Na mesma tela, o E3 permite também acompanhar a condição de operação das moto bombas, informando, por exemplo, se há algum equipamento com defeito ou sob manutenção ou se a unidade já se encontra em operação naquele instante. Além disso, o software permite acompanhar ou resetar o período, em horas, de funcionamento das moto bombas.

Ainda relacionado às moto bombas, o E3 permite visualizar e ajustar as configurações padrões definidas para as suas tensões e correntes. As configurações padrões determinadas para as pressões com que as moto bombas bombeiam a água em cada unidade também podem ser monitoradas e ajustadas pelo software.

SAAE MCR - Telas do supervisório

Figura 3. Controle do funcionamento manual ou automático do poço de captação

O mesmo controle vale para as configurações dos níveis de água nos reservatórios, as quais podem ser ajustadas de forma que o sistema ligue ou desligue as moto bombas conforme seja necessário, contribuindo assim para garantir o abastecimento e redução de desperdícios. Neste contexto voltado ao uso mais racional de água e energia, o E3 também permite selecionar quais estações entrarão em funcionamento nos horários de ponta conforme a demanda.

SAAE MCR - Telas do supervisório

Figura 4. Tela que permite escolher quais estações serão acionadas nos horários de ponta

O E3 exibe ainda os níveis e volumes de água verificados no total e junto a cada reservatório, permitindo acessar as configurações padrões ajustáveis da altura da água em cada reservatório. As vazões mensuradas nas moto bombas localizadas entre os poços e reservatórios, tanto a total quanto a calculada por hora, também são monitoradas, assim como o tempo de varredura do sistema de automação em cada unidade.

SAAE MCR - Telas do supervisório

Figura 5. Controle do nível de água presente nos reservatórios

Por fim, a solução da Elipse permite emitir relatórios dos eventos, históricos e alarmes assinalados no período estipulado pelo usuário. Em relação aos alarmes, caso algum valor definido na configuração padrão não esteja sendo respeitado, por exemplo, haja uma subtensão muito abaixo da indicada, o E3 alerta os operadores via um sinal visual e sonoro.

Além dos relatórios, o software permite, que esta mesma análise de desempenho das unidades, seja realizada sob a forma de gráficos. Vale salientar que, tanto os relatórios quanto os gráficos podem ser exportados para PDF ou Excel, sendo instrumentos de extrema utilidade junto às auditorias de fiscalização.

SAAE MCR - Telas do supervisório

Figura 6. Gráfico de análise do nível de um reservatório

Benefícios para o SAAE

O Elipse E3 permite ao SAAE monitorar, em tempo real, as 31 unidades do sistema de abastecimento de água em Marechal Cândido Rondon (PR). Com isto, o operador é informado caso haja qualquer ocorrência via os alarmes, podendo agir com mais agilidade para solucioná-la. Uma manobra que, hoje, é feita em fração de segundos, antes, levava horas, uma vez que o monitoramento não era remoto, mas sim realizado de forma local.

Os relatórios e informações geradas pelo E3 nos permitem diagnosticar e solucionar problemas com mais agilidade, dispensando o envio das rondas até cada unidade simplesmente para monitoramento.

Este controle lhes possibilitou também verificar a necessidade de se elevar o fator de potência das moto bombas. Um benefício que vai direto ao encontro do objetivo central desta automação, ou seja, reduzir os desperdícios com água e, neste caso em particular, energia.

Confira abaixo outros benefícios proporcionados pelo software da Elipse ao SAAE:

  • Monitoramento, em tempo real, das variáveis de pressão, vazão e nível da água nos reservatórios;
  • Possibilidade de monitorar e ajustar as configurações padrões das tensões, correntes, pressões e níveis de água nos reservatórios;
  • Sistema de alarmes que alerta os operadores caso haja qualquer espécie de problema nas unidades;
  • Possibilidade de acompanhar ou resetar o tempo de funcionamento das moto bombas;
  • Monitoramento da condição de operação das moto bombas;
  • Emissão de relatórios dos eventos, históricos e alarmes, que podem ser exportados para Excel e PDF;
  • Emissão de gráficos de análise de desempenho das unidades, que, assim como os relatórios, também podem ser exportados para Excel e PDF.

Ficha Técnica

  • Cliente: SAAE
  • Integrador: Alfacomp Automação Industrial Ltda.
  • Pacote Elipse: Elipse E3
  • Plataforma: Windows 10 PRO
  • Número de cópias: 4 (1 E3 Server + 1 E3 Viewer Control + 1 E3 Viewer Only + 1 E3 Studio )
  • Pontos de I/O: 1500
  • Drivers de comunicação: MODBUS RTU e MODBUS TCP

Solicite informações adicionais ou uma cotação

CLP – Controlador lógico programável

O Controlador Lógico Programável é um computador robusto projetado para o controle de processos industriais e, portanto, utilizado em automação industrial, em inglês: PLC – Programmable Logic Controller. Esses controladores podem automatizar processos específicos, máquinas, ou linhas de produção. O CLP monitora o estado dos dispositivos de entrada, toma decisões baseado no programa nele instalado e comanda o estado dos dispositivos por ele controlado. Exemplo de CLP: Haiwell. 

Praticamente, qualquer linha de produção, máquina ou processo podem ser grandemente melhorados pela utilização de CLPs. Dessa forma, entre os benefícios de se utilizar um CLP estão a capacidade de reprogramação, alteração de sequências, ampliação de linhas, criação de réplicas de máquinas e processos, tudo isso enquanto podemos coletar e comunicar informações vitais.

Como funciona o CLP

O CLP funciona recebendo informações de sensores e dispositivos de entrada, processando os dados e controlando atuadores e dispositivos de saída conforme programas previamente instalados.

CLP - Como funciona

Baseado nas leituras das entradas e saídas o CLP pode registrar dados em tempo real, tais como produtividade de uma máquina ou a temperatura de operação, automaticamente iniciar ou interromper um processo, gerar alarmes no caso de mal funcionamento e muito mais.

Linguagem Ladder

A linguagem Ladder é uma linguagem de programação de CLP que representa um programa por um diagrama gráfico baseado na lógica dos relés, ou seja, parece com o diagrama esquemático de um painel de relés. O nome é baseado no fato de que a representação gráfica do programa lembra o formato de uma escada (ladder em inglês).

Enquanto no início da história dos CLPs a linguagem Ladder era a única linguagem disponível para a programação de CLPs, atualmente outras formas de programação estão padronizadas dentro da norma IEC-61131-3. Entre as novas opções estão a lista de instruções e o diagrama de blocos.

Entradas do CLP

CLP - Controlador lógico programável

Entradas de um CLP são os pontos de conexão onde são ligados os sensores. Podem ser localizados em módulos, no caso de CLPs modulares, ou estar incorporados no gabinete único, no caso de CLPs compactos.

Exemplos de entradas digitais

  • 24 volts CC – tipo P ou N
  • 110 volts CA (triac) ou 220 volts CA (triac)
  • encoder ou contador rápido (5Vcc, 10Vcc ou 24Vcc)

Exemplos de entradas analógicas

  • 0 a 5V ou 0 a 10V
  • 0 a 20 mA ou 4 a 20mA
  • PT100 ou Termopar

Saídas do CLP

Ciclo de varredura do CLP

Saídas de um CLP são os pontos de conexão onde são ligados os atuadores. Podem ser localizados em módulos, no caso de CLPs modulares, ou estar incorporados no gabinete único, no caso de CLPs compactos.

Exemplos de saídas digitais

  • 24 VCC (transistor) – tipo P ou N
  • 110 VCA ou 220 VCA (triac)
  • Relé

Exemplos de saídas analógicas

  • 0 a 5V ou 0 a 10V
  • 0 a 20 mA ou 4 a 20mA

Ciclo de varredura do CLP

O funcionamento dos CLPs é um processo contínuo chamado de varredura. Em cada ciclo de varredura, o equipamento realiza as seguintes atividades:

  • Leitura das entradas
  • Execução das instruções do programa
  • Escrita (atualização) das saídas

A ordem de grandeza do tempo de varredura está entre 1ms e 100 ms, e depende do modelo do CLP e do tamanho do programa. O tempo de varredura cresce com o programa.

Curso de programação de CLP

Aprenda a programa um CLP de última geração investindo apenas o seu tempo. Para tanto, conheça o curso de automação industrial utilizando o CLP Haiwell. Baixe as aulas sem custo, faça o teste de conhecimentos e receba um certificado com seu índice de aproveitamento.

Conheça o CLP Haiwell seguindo este passo a passo

Haiwell – O CLP com melhor custo-benefício do mercado

O CLP Haiwell apresenta versatilidade e alto desempenho para as mais diversas aplicações industriais como injeção de plástico, empacotamento, tecelagem, fabricação de medicamentos assim como para aplicações em processos médico-hospitalares, meio-ambiente, saneamento, serviços municipais, gráficas, construção civil, automação predial, sistemas de condicionamento de ar, máquinas CNC, e outros campos do controle e automação. O CLP Haiwell tem sua capacidade expandida através de diversas interfaces que ampliam suas entradas digitais, saídas digitais, entradas analógicas, saídas analógicas, entradas de contagem rápida, saídas digitais de pulso de alta velocidade e portas de comunicação.

CLP Haiwell para automação industrialDiferenciais do CLP Haiwell

  • Suporte técnico Alfacomp
  • Ferramenta gratuita de programação com capacidade de simulação do programa sem necessidade de conectar ao CLP
  • Processador ARM de alto desempenho e relógio de tempo real
  • Portas RS232 e RS485 nativas com MODBUS mestre e escravo
  • Porta Ethernet opcional com MODBUS TCP
  • Bornes de conexão removíveis para facilidade de manutenção
  • Entradas e saídas digitais rápidas (200 KHz)

Características gerais

Ethernet

O CLP mestre e os módulos remotos suportam comunicação Ethernet e até 5 portas RS232 ou RS485 comunicando simultaneamente. Pela rede é possível comunicar, programar, monitorar e trocar dados com os CLPs. A porta Ethernet pode ser utilizada para intercomunicar CLPs, IHMs e computadores.

Atualização do firmware

Através deste recurso é possível alterar e atualizar o firmware dos CLPs. Desta forma, recursos novos podem ser adicionados a equipamentos anteriores na medida que forem desenvolvidos pela fabricante.

Poderosos recursos de comunicação

Os CLPs possuem duas portas seriais nativas, uma RS232 e uma RS485, que podem ser expandidas para até 5 portas. Cada porta pode ser utilizada tanto como mestre quanto como escravo na comunicação. A comunicação em rede pode ser 1:N, N:1 e N:N e uma grande variedade de interfaces IHM de mercado são suportadas, assim como inversores, medidores e periféricos diversos.

Suporte a múltiplos protocolos de comunicação

Os CLPs possuem instalados de forma nativa os protocolos de comunicação MODBUS RTU e ASCII, Free Communication Protocol e o Haiwellbus High-Speed Communication Protocol of Xiamen Haiwell Technology Co., Ltd. A composição de arquiteturas sofisticadas e complexas são facilitadas pois basta uma única instrução para estabelecer um modo de comunicação. Desta forma, problemas como conflitos de comunicação, colisões e problemas de handshaking são minimizados e até eliminados, sendo possível a coexistência simultânea de diversos protocolos diferentes.

Função de contagem de pulsos em alta velocidade

Os CLPs suportam até 8 canais duplex de alta velocidade (200 kHz) de contagem de pulsos. São possíveis 7 modos de funcionamento com as entradas de contagem rápida (pulso / direção 1 oitava, pulso / direção 2 oitavas, pulso direto / reverso 1 oitava, pulso direta / reverso 2 oitavas, fases A / B 1 oitava, fases A / B 2 oitavas, fases A / B 4 oitavas), e três tipos de comparação (comparação de uma etapa, comparação absoluta e comparação relativa), e ainda é possível a comparação de 8 valores fixos com função de self-learning.

Medição de frequência de pulsos de alta velocidade

São possíveis até 16 canais de 200 kHz de alta velocidade para a medição de frequência.

Saída de pulsos de alta velocidade

São possíveis até 8 canais duplex de pulsos de saída em 200 kHz. Desta forma, até 8 motores de passos podem ser controlados. Os CLPs possuem funções que permitem controlar aceleração e desaceleração, envelopes de múltiplos segmentos, um sinal de saída de sincronismo facilita a sincronização precisa dos motores. Usadas de forma independente, estão disponíveis até 16 saídas rápidas para funções de PWM, podendo controlar até 16 motores de passo ou servos.

Função de controle de movimentação

Os CLPs Haiwell suportam até 8 canais de 200 kHz para controle de movimentação que permitem interpolação linear, interpolação circular, pulso de saída de referência, endereço absoluto, endereço relativo, compensação de folga, retorno ao ponto de partida e definição de ponto de partida.

Função de controle PID

Até 32 malhas de controle PID são suportadas pelos CLPs Haiwell. Estão disponíveis a auto sintonia, o controle de temperatura por lógica Fuzzy, o controle de temperatura por curva TTC, o controle de válvulas e de outros dispositivos industrias.

Captura de bordas e interrupções

Os CLPs suportam até 8 canais para detecção de bodas de subida e descida de sinais para funções de interrupção. Todas entradas permitem a aplicação de filtros para a correta detecção dos sinais. Estão disponíveis 52 níveis de interrupção em tempo real.

Funções de processamento analógico de alto desempenho

Os registros AI das entradas analógicas podem ser acessados diretamente e estão disponíveis funções para conversão de unidades de engenharia, ajuste de frequência de amostragem e correção de zero. Os registros AQ das saídas analógicas podem ser convertidos para unidades de engenharia e podem ser configurados para manter seus valores.

Proteção por senha

Existem três níveis de senhas para garantir a proteção dos CLPs e do trabalho desenvolvido em sua programação: senha de proteção de programas, senha de proteção de blocos, senha de acesso ao hardware.

Características diversas

Além das características já citadas, os CLPs Haiwell também possuem função de autodiagnóstico, função de proteção contra falha de energia, relógio de tempo real, operações matemáticas em ponto flutuante, etc.

Solicite informações adicionais ou uma cotação

Receba nossa Newsletter












Sensor de nível 4 estágios ID3018

O sensor de nível ID3018 permite ler o nível de reservatórios utilizando 5 eletrodos que ficam mergulhados na água.

ID3018 – Sensor de nível 4 estágiosFuncionamento do sensor de nível 

Os eletrodos devem ser conectados ao borne de Entradas.
O eletrodo GND deve ser posicionado na posição mais inferior do reservatório, preferencialmente sempre mergulhado no líquido.
Os eletrodos 25%, 50%, 75% e 100% devem ser posicionados nas alturas relativas aos níveis correspondentes.
As Saídas 25%, 50%, 75% e 100% constituem sinais digitais que assumem o valor de tensão igual à do VCC quando o nível de água atinge o eletrodo correspondente. Dessa forma, assumindo que o sensor está sendo alimentado com 24VCC, quando o nível de água atingir o eletrodo 25%, a saída 25% passará de 0VCC para 24VCC. Quando o nível de água atingir o eletrodo 50%, a saída 50% passará de 0VCC para 24VCC e assim por diante.
As saídas GND, 25%, 50%, 75% e 100% podem ser conectadas a 4 entradas digitais de um CLP para que o mesmo adquira a leitura em 4 estágios de nível.

Especificações do sensor de nível

ESPECIFICAÇÕES TÉCNICAS DO SENSOR DE NÍVEL ID3018
Alimentação: 12 a 24VCC Corrente de consumo: 50 mA (típico)
Aplicação: medição de nível de água Número de estágios: 4
Dimensões: 71 x 83 x 37 mm Construção: gabinete em aço para fixação em trilho DIN
Indicação visual: 4 LEDs de nível + 1 LED de alimentação Conexão: Bornes elétricos

Aplicação típica do sensor de nível

ID3018 – Sensor de nível 4 estágios

Eletrodo indicado para o sensor de nível

Utilizar preferencialmente eletrodos apropriados para a detecção de nível de água, construídos em carcaça de plástico e elemento condutor em aço inox.

ID3018 – Sensor de nível 4 estágios

Solicite informações adicionais ou uma cotação

 

Princípio de funcionamento do medidor ultrassônico de nível

Ultrassom é o som em frequência superior à que o ouvido humano pode escutar. O ouvido humano consegue escutar até 20 kHz, são consideradas ultrassônicas as frequências superiores aos 20 kHz.

Ondas ultrassônicas são utilizadas na indústria para medir o nível de líquidos e sólidos sem a necessidade de contato com o produto medido, sendo ideais para a medição de materiais corrosivos e de alta temperatura.
O ultrassom aplicado na medição de nível normalmente está na faixa de 40 a 200 kHz. O ultrassom detecta objetos pelo mesmo princípio do radar, ou seja, pulsos ultrassônicos são emitidos na direção do objeto e a distância é calculada pelo tempo que o som leva para ser refletido de volta. Morcegos utilizam o mesmo princípio para guiarem seu voo.
O nível é calculado com base no tempo medido entre a emissão do pulso e a recepção da onda refletida. Ao nível do mar em temperatura de 20° C a velocidade do som é 344 m/s.
No exemplo da figura, um transmissor de nível ultrassônico é fixado no topo de um tanque parcialmente cheio de líquido. O nível de referência para todas as medições é o fundo do tanque. O nível medido será o da superfície do líquido que está a uma certa distância do sensor ultrassônico de nível. Sinais de pulso ultrassônicos são transmitidos pelo transmissor e refletidos de volta para o sensor. O tempo de viagem do pulso ultrassônico do sensor até a superfície do líquido e de volta para o sensor é calculado e dividido por dois Conhecendo a velocidade do som para as condições de temperatura e pressão, o equipamento transmissor de nível calcula o nível. O resultado final da unidade de medição pode ser centímetros, pés, polegadas, etc.

Distância do sensor ao líquido = Velocidade do som x Tempo de transito / 2

Problemas práticos de projeto do transmissor ultrassônico de nível

O princípio de medição acima parece bastante simples e direto na teoria. Na prática, existem algumas dificuldades técnicas a serem consideradas para se obter uma leitura correta do nível.

  • A velocidade do som muda devido à variação da temperatura do ar. É necessário um sensor de temperatura integrado para compensar alterações na velocidade do som devido a variações de temperatura.
  • Alguns ecos de interferência desenvolvidos por bordas e superfícies refletoras, causam erro na medição. Isso pode ser resolvido pelo software do transmissor, normalmente denominado supressão de eco de interferência.
  • A calibração do transmissor é crucial. A precisão da medição depende da precisão da calibração. A distância vazia e o intervalo de medição devem ser determinados corretamente na instalação e ajuste do transmissor.
  • O trânsito do sinal ultrassônico não permite medição precisa em distância muito curta. Por isso, considere a distância de bloqueio indicada pelo fabricante do equipamento. Esta distância não deve nunca ser ultrapassada pelo líquido medido.

Estrutura básica de um transdutor ultrassônico


Sensor ultrassônico é o coração do instrumento transmissor de nível ultrassônico.
Este sensor converterá energia elétrica em ondas de ultrassom. Cristais piezoelétricos são usados ​​para esse processo de conversão.
Os cristais piezoelétricos oscilarão em altas frequências quando energia elétrica é aplicada a ele.
O contrário também é verdade. Esses cristais piezoelétricos gerarão sinais elétricos no recebimento do ultrassom. Esses sensores são capazes de enviar ultra-som para um objeto e receber o eco desenvolvido pelo objeto.
O eco é convertido em energia elétrica para processamento posterior pelo circuito de controle.

Diagrama em blocos do transmissor ultrassônico de nível típico


Observe o bloco diagrama da figura. Um circuito de controle baseado em microcontrolador monitora todas as atividades do transmissor ultrassônico de nível.
Existem dois circuitos, uma para transmitir os pulsos e outro para receber os pulsos refletidos. Os pulsos gerados pelo  transmissor são convertido em pulsos de ultrassom pelo transdutor ultrassônico (transmissor) e direcionado para o objeto. Os pulsos de ultrassom são refletidos de volta como um sinal de eco no sensor ultrassônico (receptor). O receptor converte esse pulso ultrassônico em um pulso de sinal elétrico através do circuito receptor de pulsos.
O tempo decorrido ou o tempo de reflexão é medido pelo contador. Esse tempo decorrido é proporcional a distância do sensor de nível ao objeto. Esse tempo decorrido é convertido em nível pelo circuito de controle. Existe um circuito gerador de temporização que é usado para sincronizar todas as funções no sistema de medição de nível ultrassônico.
O nível é finalmente convertido em sinal 4 a 20mA, sendo o valor de 4mA indicador do nível mínimo e o 20mA indicador do nível máximo.

Vantagens do transmissor ultrassônico de nível

O transmissor de nível ultrassônico não possui partes móveis e pode medir o nível sem fazer contato físico com o objeto. Essa característica típica do transmissor é útil para medir níveis em tanques com produtos químicos corrosivos, perigosos e em alta temperatura. A precisão da leitura permanece inalterada mesmo após alterações na composição química ou na constante dielétrica dos materiais nos fluidos do processo.

Limitações do transmissor ultrassônico de nível

Os transmissores de nível ultrassônico são os melhores dispositivos de medição de nível em que o eco recebido do ultrassom é de qualidade aceitável. Não é tão conveniente se a profundidade do tanque for alta ou se o eco for absorvido ou disperso. O objeto não deve ser do tipo absorvente de som. Também não é adequado para tanques com muita fumaça ou umidade de alta densidade.

Instalação

  • O transmissor ultrassônico é instalado no topo do reservatório, acima do nível máximo do líquido. Os pulsos ultrassônicos são emitidos pelo transmissor e refletidos pela superfície do líquido.
  • O líquido não pode tocar no instrumento.
  • Instale o instrumento perpendicular à superfície do líquido medido.
  • A sonda deve manter uma certa distância da parede do tubo (mais de 30 cm).
  • Evite que o sinal seja refletido por objetos e superfícies que provoquem leituras falsas do nível.

Utilizando um tubo para guiar o sinal


Se houver intensa interferência de eco no local (como objetos e superfícies refletoras no percurso do sinal ultrassônico) ou ainda espumas em líquidos, recomenda-se tubos de canos de PVC com diâmetro maiores que 100 mm que servirão como guias de ondas.
Observações:

  • É necessário ter um orifício de ar no topo para a equalização da pressão. O orifício deve ser liso. É ideal ter chanfros a 45 °.
  • A parede interna do tubo do guia de ondas deve ser lisa (sem solda e costuras).
  • Para garantir que não haja partículas aderentes à parede interna do tubo do guia de ondas, é necessário executar a limpeza regularmente.

Exemplo: Transmissor ultrassônico de nível TUN21-R

Característica importantes

  • Estão disponíveis quatro taxas de ajuste para ler com precisão o nível médio do líquido, mesmo na presença de flutuação drástica do nível do líquido.
  • Seis modos de exibição estão disponíveis para apresentar a forma de onda do eco e a curva histórica.
  • O sensor de temperatura integrado internamente fornece compensação de temperatura em tempo real para a velocidade do som.
  • Display em cristal líquido facilita operação local.
  • Diagnóstico instantâneo do sinal 4 a 20 mA.
  • Detecção e supressão automática de interferências eletromagnéticas.
  • Conexões protegidas contra surtos elétricos.
  • Saída indicadora de alarme.
  • A medição sem contato permite uma longa vida de uso e operação.
ESPECIFICAÇÕES TÉCNICAS DO TRANSMISSOR ULTRASSÔNICO DE NÍVEL TUN21-R
Faixas de medição: 5, 10, 15 e 20 metros Distância de bloqueio de leitura: 35 a 60 cm
Precisão: 0.3% fundo de escala Resolução: +/- 2 mm
Alimentação: 12 a 24VCC ou 85 a 264 VCA Corrente de consumo: 50 a 100 mA
Ripple máximo admitido: 200 mV Carga admitida máxima: 500 ohms
Interface digital de saída: Modbus RTU por RS485 Material do invólucro: ABS
Temperatura de operação: -10 a +60 °C Classe de proteção: IP65
Pressão de operação: 0.8 a 3 bar ou 0.08 a 0.3Mbar Máximo comprimento de cabo: 200 metros

Dimensões

Nota: O instrumento é fixado por uma porca plástica (diâmetro externo 88 mm). Se o instrumento estiver permanentemente em ambiente úmido, é recomendável uma boa selagem dos condutores e da tampa do visor.

Conexões

O transmissor ultrassônico de nível utiliza sinais eletrônicos de baixa amplitude e, por isso, é necessário um bom aterramento. O CLP conectado ao instrumento deve estar afastado de inversores de frequência e de motores de alta potência para evitar interferências eletromagnéticas.

Vantagens do transmissor ultrassônico de nível

O transmissor de nível ultrassônico não possui partes móveis e pode medir o nível sem fazer contato físico com o objeto. Essa característica típica do transmissor é útil para medir níveis em tanques com produtos químicos corrosivos, perigosos ou em alta temperatura. A precisão da leitura permanece inalterada mesmo após alterações na composição química ou na constante dielétrica dos materiais nos fluidos do processo.

Limitações do transmissor ultrassônico de nível

Os transmissores de nível ultrassônico são os melhores dispositivos de medição de nível em que o eco recebido do ultrassom é de qualidade aceitável. Não são tão convenientes se a profundidade do tanque for alta ou se o eco for absorvido ou disperso por superfícies refletoras. O objeto não deve ser do tipo absorvente de som. Também não é adequado para tanques com muita fumaça ou umidade de alta densidade.

Solicite informações adicionais ou uma cotação

Receba nossa Newsletter












[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

Este artigo é o quarto da série “Tudo sobre telemetria do abastecimento municipal de água.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

[button_2 align=”center” href=”https://alfacompbrasil.com/2019/04/12/telemetria-de-agua/”%5DLeia o artigo: TUDO SOBRE A TELEMETRIA DO ABASTECIMENTO MUNICIPAL DE ÁGUA[/button_2]

CCO – Centro de Controle e Operação – O que é

Dotado de computadores e monitores, o CCO permite que a equipe de operação supervisione e controle o funcionamento de todo o sistema de abastecimento de água do município. Do centro de operações é possível comandar de forma automática e manual o funcionamento de elevatórias, reservatórios, boosters, válvulas, comportas, macro medidores de vazão e qualquer outro dispositivo eletromecânico. Toda a comunicação se dá via rádio. A foto abaixo apresenta um exemplo de CCO.

Foto: Giuliano Miranda – DCS/SAAE de Indaiatuba/SP

Diagrama geral do sistema de telemetria comandado pelo CCO

A figura a seguir mostra um exemplo didático de sistema de telemetria do abastecimento de água municipal composto por:

  • 1 CCO – Centro de Controle e Operação;
  • 4 elevatórias  de água tratada;
  • 4 reservatórios de água;
  • 1 VRP – Válvula reguladora de pressão;
  • 1 macromedidor de vazão.

Todas as estações são dotadas de rádios modem. O CCO é dotado de antena omnidirecional e as estações de antenas direcionais. Quando necessário, repetidoras de rádio são utilizadas para que a comunicação alcance estações mais distantes ou que não possuam visada direta com o CCO.

Equipamentos componentes de um CCO

No exemplo a seguir, o Centro de Controle Operacional do sistema de abastecimento de água municipal é dotado dos seguintes equipamentos:

  • 1 computador rodando o software supervisório SCADA servidor;
  • 2 computadores rodando cópias de visualização (viewers) do SCADA;
  • Rede Ethernet;
  • 1 impressora;
  • Painel de rádio modem;
  • Antena omni direcional.


O computador onde está instalado a licença SCADA servidor é responsável pela comunicação do sistema. A intervalos de tempo definidos, comunica com todas as estações remotas, buscando e enviando dados. O mesmo pode ser configurado para alimentar os bancos de dados onde são armazenados dados históricos de alarmes, leituras e eventos.
Os computadores que rodam cópias viewer podem ser configurados para apenas supervisionar ou também controlar o sistema.

O painel do rádio modem pode ser instalado próximo ao microcomputador servidor e conectado ao mesmo por cabo serial em RS232.

O rádio modem pode também ser instalado junto à antena omni no ponto mais elevado do prédio do CCO. Nessa condição, o rádio será conectado ao painel via cabo de rede CAT5. O cabo irá conduzir a alimentação e a comunicação. A comunicação entre o rádio e o painel se dará em RS485. Este cabo pode ter até 100 metros de comprimento sem necessidade de condutores adicionais.

Painel do CCO

O painel abriga uma fonte de alimentação e um conversor serial RS232/RS485. A utilização principal para a qual a solução foi concebida, é a interligação do computador ao um rádio modem. O rádio modem estará instalado próximo à antena, utilizando-se o KIT RPE, e será alimentado pela fonte de alimentação do painel PT5200.

Instalação do rádio junto a antena

O rádio modem pode ser instalado próximo à antena. Com esta solução, as perdas no cabo de RF são minimizadas e podemos instalar o rádio afastado do computador e interligado por cabo de rede CAT5. A alimentação do rádio e a comunicação em RS485 são transportadas pelo cabo em distâncias de até 100 metros. O gabinete utilizado tem IP67 e pode ficar ao tempo.

Os painéis com rádio em ponto elevado possuem o conversor CS485-V ao invés do rádio. Esta solução é indicada quando a melhor posição da antena está a mais de 10 metros do rádio ou quando o sinal de rádio é fraco.

Softwares do CCO

O software central de controle de um CCO é o software supervisório, também chamado SCADA (Supervisory Control and Data Acquisition). Este software permite visualizar na forma de telas gráficas o processo que está sendo supervisionado e controlado, no caso, o sistema de distribuição de água tratada do município. O software supervisório, normalmente está organizado em módulos e licenças, sendo que os principais são:

  • Servidor: responsável pela aquisição de dados e processamento de scripts;
  • Visualizador: responsável pela visualização gráfica e interface com o usuário.

Um mesmo computador pode rodar um dos módulos ou ambos.
Exemplo de tela configurada no SCADA:

Iremos detalhar o SCADA e sua operação no artigo sobre este assunto.

Protocolo de comunicação

O protocolo de comunicação mais utilizado na telemetria de água e esgoto é o Modbus.

Modbus é um protocolo de comunicação serial desenvolvido e publicado pela empresa Modicon (hoje uma empresa do grupo Schneider Electric) em 1979 pra uso em seus CLPs (Controladores Lógicos Programáveis). O protocolo Modbus se transformou no protocolo mais difundido para comunicação entres dispositivos de controle e automação industrial. Os motivos principais para o uso do Modbus em ambiente industrial são:

  • Foi desenvolvido especialmente para aplicações industriais;
  • Domínio público e sem cobrança de direitos autorais;
  • Fácil de utilizar e manter;
  • Comunicação de bits e words entre dispositivos de diferentes fabricantes sem restrições.

Saiba mais sobre o protocolo Modbus: https://alfacompbrasil.com/2019/02/27/protocolo-modbus/

Comunicação via rádio

A comunicação de dados por rádios modem é possível em faixas canalizadas, sendo que cada estação tem de ser licenciada pela Anatel, e também em faixas destinadas à operação de transceptores que utilizam a técnica do espalhamento espectral, ou spread spectrum. Esses últimos estão dispensados de licenciamento dentro de certas condições. Os enlaces diretos, sem repetidoras, utilizando transceptores dotados de modems, são possíveis em distâncias desde alguns poucos metros até mais de 30 km. Utilizando repetidoras, as distâncias podem ser estendias a centenas de quilômetros. Obstruções devidas a relevo e edificações são fatores determinantes na viabilidade dos enlaces.

[img_text_aside style=”2″ image=”https://alfacompbrasil.com/wp-content/uploads/2013/05/rc3a1dio-modem-rm2060.jpg” image_alignment=”left” headline=”Exemplo%20de%20r%C3%A1dio%20modem” alignment=”left”]

O transceptor RM2060 consiste em uma solução de alto desempenho e baixo custo para comunicação wireless utilizando tecnologia Spread Spectrum na faixa dos 900 MHz podendo substituir milhares de metros de cabos de comunicação em ambientes industriais ruidosos. Utilizando comprovada tecnologia FHSS, que dispensa licença de operação junto a Anatel, o transceptor RM2060 estabelece comunicação entre computadores, CLPs e instrumentos diversos que possuem porta serial em padrão RS232 ou RS485 com taxas de 1200 a 115.200 bps. Para aumentar a segurança e integridade das comunicações, os transceptores RM2060 permitem a encriptação dos dados. Alcance de até 32 km com visada.

Saiba mais

[/img_text_aside]

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”4246, 4171, 4153, 3112, 2069″ text_color=”undefined” hide_author=”” ][/recent_posts]
 

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

Este artigo é o quinto da série Tudo sobre telemetria do abastecimento municipal de água“.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

[button_2 align=”center” href=”https://alfacompbrasil.com/2019/04/12/telemetria-de-agua/”%5DLeia o artigo: TUDO SOBRE A TELEMETRIA DO ABASTECIMENTO MUNICIPAL DE ÁGUA[/button_2]

O que são remotas de telemetria?

Remotas de telemetria são, por definição, dispositivos microprocessados que permitem monitorar e controlar objetos físicos a distância, conectando sensores e atuadores a um sistema SCADA de tele supervisão e controle. Outros nomes para remota de telemetria são:

  • UTR – Unidade Terminal Remota;
  • URT – Unidade Remota de Telemetria;
  • RTURemote Telemetry Unit ou Remote Telecontrol Unit.

No âmbito da telemetria da distribuição de água municipal, uma designação que se tornou bastante popular para a remota de telemetria é o “Painel de telemetria“.

Composição das remotas de telemetria

A figura abaixo apresenta uma composição típica de uma remota de telemetria. No exemplo mostrado, a remota de telemetria é composta por:

  • Fonte de alimentação – Transforma a tensão alternada da rede nas tensões CC usuais, geralmente 24 VCC e gerencia a carga da bateria para a operação na falta de energia da rede;
  • CLP (Controlador Lógico Programável) – Responsável por todo o processamento local e automatismo da remota;
  • Interfaces de entradas – Condicionam os sinais de campo fornecidos pelos sensores. Podem estar incorporadas ao CLP ou serem módulo externos ao mesmo;
  • Interfaces de saída – Condicionam os sinais analógicos e digitais produzidos pelo CLP para o comando dos atuadores. Podem estar incorporadas ao CLP ou serem módulos externos ao mesmo;
  • Rádio modem – Podem ser rádios spread spectrum, canalizados ou rádios GPRS/GSM. Permitem à remota comunicar com o CCO ou com outras remotas.

Exemplos de componentes utilizados na remota de telemetria

A figura a seguir mostra uma possível configuração utilizando os seguinte módulos:

  • Fonte com bateria modelo 2061;
  • Rádio modem RM2060;
  • CLP Haiwell modelo T48S0P com 28 ED e 20 SD;
  • Interface IA2820 com 8 entradas em 4 a 20 mA;
  • Interface ID2908 com 8 saídas isoladas a relé.

Painel de telemetria PT5520

[img_text_aside style=”2″ image=”https://alfacompbrasil.com/wp-content/uploads/2018/08/PT5520-sem-fundo-215×300.png” image_alignment=”left” headline=”” alignment=”left”]O painel de telemetria PT5520 é indicado para uso na automação e telemetria das seguintes estações:

  • Elevatórias de água e esgoto
  • Reservatórios
  • Boosters
  • Macro-medidores

[/img_text_aside]

Baseado no CLP Haiwell modelo C48S0P, o painel apresenta alto índice de integração, modularidade, facilidade de manutenção e protocolo MODBUS RTU mestre e escravo, resultando em uma montagem de alto desempenho e baixo custo.

Lista de peças do painel PT5520


[file_download style=”1″][download title=”PT5520%20-%20Projeto%20completo%20-%20Download” icon=”style1-Zip-64×64.png” file=”https://alfacompbrasil.com/wp-content/uploads/2019/05/PT5520-Projeto-completo.zip” package=”” level=”” new_window=””]Manual%20e%20esquem%C3%A1tico%20el%C3%A9trico%20do%20painel%20de%20telemetria%20PT5520.%20Arquivo%20compactado%20.ZIP.[/download][/file_download]

Painel de telemetria PT5420 – Opção econômica

[img_text_aside style=”2″ image=”https://alfacompbrasil.com/wp-content/uploads/2019/05/PT5420-6-sf.jpg” image_alignment=”left” headline=”” alignment=”left”]

O painel de telemetria PT5420 é indicado para uso na automação e telemetria das seguintes estações:

  • Elevatórias de água e esgoto
  • Reservatórios
  • Boosters
  • Macro-medidores

[/img_text_aside]

Baseado no CLP Haiwell modelo C16S0P, o painel constitui uma versão econômica ou para estações de menor porte. Apresenta alto índice de integração, modularidade, facilidade de manutenção e protocolo MODBUS RTU mestre e escravo, resultando em uma montagem de alto desempenho e baixo custo.

Lista de peças do PT5420


[file_download style=”1″][download title=”PT5420%20-%20Projeto%20completo%20-%20Download” icon=”style1-Zip-64×64.png” file=”https://alfacompbrasil.com/wp-content/uploads/2019/05/PT5420-Projeto-completo.zip” package=”” level=”” new_window=””]Manual%20e%20esquem%C3%A1tico%20el%C3%A9trico%20do%20painel%20de%20telemetria%20PT5420.%20Arquivo%20compactado%20.ZIP.[/download][/file_download]

Programação em Ladder das remotas de telemetria

Os programas em Ladder completos para a automação de reservatórios, elevatórias e demais estações componentes do sistema de distribuição de água municipal serão apresentados no artigo que irá tratar deste assunto. Se você tiver interesse ou necessidade de antecipar essa informação, solicite ao comercial@alfacomp.ind.br.

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”4389, 4326, 4171, 4153, 3112, 1910, 1238, 1146″ text_color=”undefined” hide_author=”” ][/recent_posts]

Este artigo é o quarto da série Tudo sobre telemetria do abastecimento municipal de água“.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

 

 

O que é a telemetria via rádio da distribuição de água tratada

O sistema de distribuição de água tratada é composto de reservatório e elevatórias de água tratada, válvulas reguladoras de pressão, pontos de macromedição de vazão, booster e estações de tratamento entre outros pontos de interesse. Para que o CCO – Centro de Controle e Operação – possa se comunicar com todos essas estações remotas, é necessário um sistema de comunicação. O meio de melhor custo-benefício para implementar essa comunicação é o que chamamos de telemetria via rádio, e o rádio mais utilizado para esse serviço é o rádio modem spread spectrum. Na faixa dos 900 MHz. Este artigo ensina como dimensionar e instalar o sistema de rádio para a telemetria da distribuição de água do município.

O que é um rádio modem

Os rádios transceptores ditos analógicos são compostos de um bloco transmissor e um bloco receptor. Popularmente chamados de rádio voz, possuem, em suas conexões, os seguintes sinais básicos:

  • TX – sinal de áudio que será transmitido pelo bloco transmissor;
  • RX – sinal de áudio recebido pelo bloco receptor;
  • PTTPush to talk (aperte para falar), que é o sinal que coloca o transceptor em modo de transmissão;
  • CDCarrrier Detected (portadora detectada), que é o sinal que indica que o rádio está recebendo o sinal emitido por um transmissor.

Em comunicação de voz, o TX é conectado a um amplificador de áudio que aciona um alto-falante e ao RX é ligado um microfone. Ao PTT é ligada uma chave para acionar a transmissão. Em comunicação digital, esses sinais são ligados a sinais correspondentes de um modem.

Rádio Modem é o nome dado aos equipamentos que unem um rádio e um modem e têm a capacidade de transmitir e receber dados digitais por rádio. A palavra MODEM deriva de modulator demodulator, equipamento capaz de converter informação serial digital em analógica e vice-versa.

São os seguintes os sinais básicos na interface serial de um rádio modem:

  • TXD – sinal serial a ser transmitido
  • RXD – sinal serial recebido
  • RTS – Request to Send (pedido para transmitir) indica para o rádio modem que o equipamento conectado solicita transmissão
  • CTS – Clear to Send (pronto para transmitir) indica para o equipamento conectado que o rádio modem está pronto para receber os dados a serem transmitidos
  • CD – Carrrier Detected (portadora detectada), que é o sinal que indica que o rádio está recebendo o sinal emitido por um transmissor

O que é um rádio modem spread spectrum

O FHSS (Frequency Hopping Spread Spectrum) ou Espalhamento Espectral por Saltos em Frequência foi inventado pela atriz Hedy Lamarr e pelo compositor George Antheil em 1941 e desenvolvido pelas forças armadas americanas a partir da Segunda Guerra Mundial, com a intenção de criar um sistema de comunicação por rádio mais protegido contra interceptações. As primeiras idéias sobre essa tecnologia, entretanto, datam das décadas de 20 e 30.

A técnica de spread spectrum consiste em espalhar a transmissão no espectro de frequências ocupando uma banda maior, mas com densidade de potência pequena.

Os rádios spread spectrum utilizam as faixas de frequências livres adotadas por vários países, inclusive o Brasil, denominadas como bandas ISM (Instrumentation, Scientific & Medical) definidas em 900 MHz, 2,4 GHz e 5,8 GHz.

Frequency hoppingO sinal transmitido é comutado rapidamente entre diferentes frequências dentro de uma faixa do espectro de forma pseudo-aleatória e o receptor “sabe” de antemão onde encontrar o sinal a cada novo salto.

No Brasil, a legislação que regula o uso da tecnologia spread spectrum foi inicialmente definida pela ANATEL através da Norma 02/93, posteriormente pela Norma 012/96 (resolução 209 de Jan/2000) e atualmente pela resolução 305 de Jul/2002 – Regulamento sobre Equipamentos de Radiocomunicação de Radiação Restrita.

As faixas de frequências estabelecidas para uso por equipamentos de radiocomunicação empregando a técnica de spread spectrum, para aplicações Ponto a Ponto e Ponto Multiponto, estão assim definidas: 902 a 928 MHz, 2400 a 2483,5 MHz e 5725 a 5850 MHz. Dessa forma, os sistemas que utilizam a tecnologia de spread spectrum não necessitam da licença ANATEL para a sua instalação e operação, desde que sejam atendidos os requisitos das Resoluções 209 e 305.

A regulamentação vigente estabelece as condições de operação para os sistemas que operam por Saltos de Frequência, para os sistemas que operam em Sequência Direta e para os Sistemas Híbridos. Nas faixas de 900 MHz a potência de pico máxima de saída do transmissor não deve ser superior à 1 Watt para sistemas que empreguem no mínimo 50 canais de salto e 0,25 Watt para sistemas empregando menos de 50 canais de salto. Sistemas operando nas faixas de 2,4 GHz e 5,8 GHz devem trabalhar com potência de pico máxima de saída do transmissor não superior à 1 Watt.

O que é um rádio enlace

Podemos definir como rádio enlace o conjunto de equipamentos necessários para estabelecer comunicação por rádio entre dois pontos.


Os elementos básicos para a implementação de um rádio enlace são:

  • Rádio transmissor;
  • Linha de transmissão da estação transmissora;
  • Antena transmissora;
  • Meio de propagação;
  • Antena receptora;
  • Linha de transmissão da estação receptora;
  • Rádio receptor;

Comunicação ponto-a-ponto

Na comunicação ponto-a-ponto a existem apenas pares de estações que se comunicam entre si como no exemplo didático abaixo. Normalmente, se utilizam apenas antenas direcionais nesse tipo do topologia.

Comunicação ponto-multiponto

Na comunicação ponto-multiponto uma estação central, ou mestra, irá comunica com diversas estações remotas como no exemplo abaixo. Normalmente, a estação central possui uma antena omnidirecional, enquanto as estações remotas são dotadas de antenas direcionais. Esse tipo de topologia é o mais utilizado na telemetria da distribuição de água municipal.

Topologia do sistema de rádio

A topologia do sistema de rádio diz respeito à definição dos enlaces de rádio. É como um mapa que determina qual estação se comunica com qual. Veja um exemplo prático real abaixo.

Projeto de rádio

O projeto de rádio define todos os enlaces, equipamentos e considerações necessárias para projetar e implementar o sistema de comunicação via rádio da telemetria da distribuição de água do município. Para realizar o projeto de rádio é necessário:

  • Listar as coordenadas geográficas de todos os pontos de interesse (remotas, repetidoras, CCO);
  • Levantamento dos perfis de terreno em cada enlace;
  • Avaliação da necessidade de pontos de repetição quando existem obstruções ou grandes distâncias;
  • Cálculo de rádio enlace para cada enlace do sistema. O cálculo de rádio enlace irá definir o tipo de rádio, antenas e ganhos de antenas, inclinação e azimute para a instalação da antena, tipo de cabo de RF, comprimento máximo de cabo de RF, potência e sensibilidade dos rádios.

Mapa dos enlaces de rádio

De posse dos cálculos de rádio enlace podemos mapear os enlaces com a ajuda de softwares como o Google Earth. Veja o exemplo abaixo.

Planilha de cálculo do rádio enlace

De posse das coordenadas geográficas e do levantamento do perfil do terreno entre os dois pontos, podemos planilhar os dados e calcular o enlace com a ajuda de software e planilhas de cálculo.

A planilha abaixo apresenta um exemplo de cálculo de rádio enlace utilizando a planilha desenvolvida pela Alfacomp e que está disponível para download.

 

Cálculo de rádio enlace

Uma abordagem prática voltada para sistemas de automação, telemetria e SCADA

O cálculo de rádio enlace avalia a viabilidade de comunicação entre dois pontos. Se você já teve que interligar equipamentos seriais que comunicam via RS232 ou RS485 em distâncias ou situações em que cabos seriais eram inviáveis, este artigo é para você. Utilizar rádio modem para comunicar equipamentos que se comunicam serialmente é mais fácil do que parece. Veja como calcular o enlace de rádio.

Componentes básicos de um rádio enlace

Podemos definir como rádio enlace o conjunto de equipamentos necessários para estabelecer comunicação por rádio entre dois pontos. Os elementos básicos para a implementação de um rádio enlace são:

  • Rádio transmissor;
  • Linha de transmissão da estação transmissora;
  • Antena transmissora;
  • Meio de propagação;
  • Antena receptora;
  • Linha de transmissão da estação receptora;
  • Rádio receptor;

Comportamento da energia ao logo do percurso

Desde a saída do transmissor até a chegada no receptor, o sinal sofre atenuações e ganhos. O gráfico ao lado representa a variação da intensidade do sinal ao longo do percurso. A intensidade do sinal sofre as seguintes alterações:

  • Perda no cabo do transmissor;
  • Ganho na antena transmissora;
  • Perda no espaço livre;
  • Ganho na antena receptora;
  • Perda no cabo do receptor.

As intensidades, perdas e ganhos são representados em decibel (dB).

A escala logarítmica

O dB é uma escala utilizada para representar a relação entre duas potências. São as seguintes as unidades de referência usuais nos sistemas de rádio:

  • dBW – relação entre uma dada potência e a unidade de 1W;
  • dBm – relação entre uma dada potência e a unidade de 1mW;
  • dBi – relação entre o ganho de uma antena e o ganho do irradiador isotrópico (antena teórica com diagrama de irradiação esférico).

O cálculo da relação entre duas potências é dado pela fórmula abaixo.

Exemplo: Seja uma potência de 0,001 mW, sua intensidade dada em dBm é calculada como:

10 log (0,001 mW / 1 mW) = – 30 dBm

Cálculo de Rádio Enlace

Dizemos que um enlace é viável se a intensidade calculada do sinal recebido é maior do que o nível de sensibilidade do receptor, guardada a margem de segurança. O cálculo da intensidade de sinal recebido é dado pela fórmula abaixo:

Onde:

  • Tx – Potência de saída do rádio transmissor (dBm);
  • Pt – Perda por atenuação no cabo da antena transmissora (dB);
  • Gt – Ganho na antena transmissora (dBi);
  • Ao – Atenuação no espaço livre (dB);
  • Gr – Ganho da antena receptora (dBi);
  • Pr – Perda por atenuação no cabo da antena receptora (dB);
  • RX – Sinal recebido (dBm).

Atenuação no Espaço Livre

Uma onda eletromagnética propagando-se no espaço sofre uma atenuação contínua. A intensidade é inversamente proporcional ao quadrado da distância, ou seja, quando a distância dobra, o sinal diminui para um quarto do valor. A atenuação no espaço livre pode ser calculada pela fórmula abaixo.

Onde:

  • D = distância em metros;
  • λ = Comprimento de onda (m) = 300 / freqüência (MHz);
  • Ao = Atenuação do espaço livre (dB).

Ou, utilizando a frequência (f) em MHz:

Cálculo da Potência Efetivamente Irradiada (ERP)

A Potência Efetivamente Irradiada (ERP) por uma estação transmissora pode ser calculada pela fórmula abaixo.

O valor da ERP é importante na análise para enquadramento das estações às normas da Anatel.

Perda por Obstrução da Primeira Zona de Fresnel

A energia transportada de uma antena transmissora até uma antena receptora é contida em elipsóides concêntricos chamados zonas de Fresnel. Dizemos que não existe perda por obstrução quando não há obstáculos dentro da primeira zona. Essa avaliação é feita levantando-se o perfil do terreno entre as duas estações com a ajuda de mapas cartográficos e calculando-se o raio da zona ao longo do percurso.

O cálculo do raio de Fresnel é apresentado abaixo.

Perdas ocasionadas por obstruções conhecidas como  gume de faca são calculadas com base no percentual de liberação da primeira zona de Fresnel e seguem a fórmula abaixo.

Onde v é o índice de liberação do raio de Fresnel dado por:

Ondas Eletromagnéticas

A energia enviada pelas antenas transmissoras e captada pelas antenas receptoras é transportada por ondas eletromagnéticas. Seu nome origina-se do fato de que são compostas por campos elétricos e magnéticos variáveis e se propagam no vácuo à velocidade de 300.000 quilômetros por segundo.

A maneira como os campos elétrico e magnético se orientam no espaço é chamada polarização. Se o campo elétrico é paralelo à superfície da Terra, dizemos que a polarização é horizontal; se o campo elétrico está em plano perpendicular à superfície da Terra, a polarização é vertical.

Podemos orientar antenas verticalmente ou horizontalmente.

Conceito: OEM é uma perturbação física composta por um campo elétrico (E) e um campo magnético (H) variáveis no tempo, perpendiculares entre si, capazes de se propagar no espaço.

Frequência: número de oscilações por unidade de tempo (Hz).

Comprimento de onda: distância percorrida pela onda durante um ciclo. É definido pela velocidade de propagação dividida pela frequência. Ver fórmula ao lado.

Antenas

Antenas são dispositivos capazes de transmitir e captar ondas eletromagnéticas nas faixas de radiofrequência. São compostas de componentes metálicos nas mais variadas configurações. Os comprimentos e a disposição dos elementos irão depender das frequências em que se deseja operar. Alguns tipos de antenas são listados abaixo.

  • Yagi;
  • Painel Setorial;
  • Omnidirecional;
  • Antenas Patch;
  • Log – Periódica;

As antenas de interesse principal em telemetria são a Yagi e a omnidirecional.

Antena Yagi – Uda

Normalmente conhecida apenas por antena Yagi, foi concebida em 1926 por Shintaro Uda da Universidade Tohoku do Japão com a colaboração de Hidetsugu Yagi, que teve seu nome associado à antena quando publicou o primeiro artigo em inglês descrevendo a mesma. Conceitualmente, a antena Yagi é composta por um Refletor, um dipolo simples ou dobrado e um ou mais diretores. A antena da figura é apresentada na posição de polarização vertical que é normalmente utilizada em telemetria e apresenta ganhos que vão de 3 até mais de 20 dBi.

Antena Omnidirecional

Normalmente construídas com a concepção colinear, essas antenas, como sugere o nome, irradiam com a mesma intensidade em todas as direções do plano horizontal. Sua polarização é naturalmente vertical e apresenta ganhos na faixa de 2 a 10 dBi.

Polarização de Antenas

A figura a seguir apresenta a irradiação resultante de um dipolo simples polarizado verticalmente. Em polarização vertical, o plano elétrico é perpendicular à superfície da Terra, enquanto o plano magnético é paralelo à superfície da Terra.

Diagrama de Irradiação

O diagrama de irradiação é a representação gráfica da forma como a energia eletromagnética se distribui no espaço.

O diagrama pode ser obtido tanto pelo deslocamento de uma antena de prova em torno da antena que se está medindo, como pela rotação dessa em torno do seu eixo, enviando os sinais recebidos a um receptor capaz de discriminar com precisão a freqüência e a potência recebidas.

Os resultados obtidos são geralmente normalizados. Ao máximo sinal recebido é dado o valor de 0 dB, facilitando a interpretação dos lóbulos secundários e a relação frente-costas.

A curva em azul representa a energia irradiada em cada direção em torno da antena.

Ângulo de Meia Potência

Os ângulos de meia potência são definidos pelos pontos no diagrama onde a potência irradiada equivale à metade da irradiada na direção principal. Esses ângulos definem a abertura da antena no plano horizontal e no plano vertical.

OBS: -3 dB = 50% Potência

No exemplo ao lado temos: Ângulo de –3dB = 55°

Diretividade

É a relação entre o campo irradiado pela antena na direção de máxima irradiação e o campo que seria gerado por uma antena isotrópica que recebesse a mesma potência. A diretividade de uma antena define sua capacidade de concentrar a energia irradiada numa determinada direção.

          E máx = Energia da antena em estudo.

          E isso = Energia da antena isotrópica.

Ganho

O ganho pode ser entendido como o resultado da diretividade menos as perdas. Matematicamente, é o resultado do produto da eficiência pela diretividade.

G = Ganho

D = Diretividade

η = Eficiência

A eficiência de uma antena diz respeito ao seu projeto eletromagnético como um todo, ou seja, são todas as perdas envolvidas (descasamento de impedância, perdas em dielétricos, lóbulos secundários…). Normalmente, está na faixa de 90% a 95%.

Cabos

Linha de transmissão é uma linha com dois ou mais condutores isolados por um dielétrico que tem por finalidade fazer com que uma OEM se propague de modo guiado. Essa propagação deve ocorrer com a menor perda possível. As linhas de transmissão podem ser construídas de diversas maneiras: cabos paralelos, pares trançados, microstrip, cabos coaxiais, guias de onda, etc.

Os cabos coaxiais são as linhas de transmissão mais utilizadas em aplicações de telemetria.

Conectores e Protetores Contra Surto

A tabela a seguir apresenta alguns dos conectores mais utilizados nas aplicações de Telemetria.

 

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]
[button_2 align=”center” href=”https://alfacompbrasil.com/suporte/”%5DSe você precisa de suporte técnico, clique aqui[/button_2]

Este artigo sobre SCADA – Software de supervisão, controle e aquisição de dados – para a telemetria do saneamento é o oitavo da série Tudo sobre telemetria do abastecimento municipal de água“.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

[button_2 align=”center” href=”https://alfacompbrasil.com/2019/04/12/telemetria-de-agua/”%5DLeia o artigo: TUDO SOBRE A TELEMETRIA DO ABASTECIMENTO MUNICIPAL DE ÁGUA[/button_2]

Neste artigo apresentamos um template de software supervisório genérico para um sistema de automação e telemetria de 10 reservatórios e 10 elevatórias de água tratada.

Ao longo do artigo iremos apresentar e descrever:

[bullet_block style=”size-16″ small_icon=”1.png” width=”” alignment=”center”]

  • Arquitetura do sistema SCADA de telemetria
  • As telas e suas funcionalidades
  • As telas de reservatórios e seus ajustes
  • As telas de elevatórias e seus ajustes
  • Históricos e seus ajustes
  • Alarmes e seus ajustes
  • Telas de macromedidores
  • Operação automática, manual remota e manual local
  • Telas de comunicações e seus ajustes
  • O template completo e como obtê-lo
  • O software Haiwell Cloud SCADA e como obtê-lo

[/bullet_block]

Seguindo os tutoriais e contando com ajuda de nosso suporte (https://alfacompbrasil.com/suporte/ – Whataspp (51)99380-2956), você irá baixar o software gratuito Haiwell Cloud SCADA, irá também baixar o template da aplicação pronto para uso.

[video_player type=”youtube” youtube_auto_play=”Y” style=”1″ dimensions=”560×315″ width=”560″ height=”315″ align=”center” margin_top=”0″ margin_bottom=”20″ ipad_color=”black”]aHR0cHM6Ly95b3V0dS5iZS9oamp6M1ZFbjJkdw==[/video_player]

Aprendendo a configurar o SCADA, você irá customizar o template para a realidade de sua cidade, tudo isso sem custo.

Arquitetura do sistema SCADA de telemetria

O sistema de automação funciona em protocolo mestre-escravo. A centralização de todas as comunicações se dá no microcomputador do CCO (Centro de Controle e Operação) localizado na [nome do local]. A água tratada na ETA é bombeada para os reservatórios por uma rede de estações elevatórias. Os níveis e parâmetros remotos necessários para o funcionamento de cada estação são lidos e repassados pelo computador do CCO a cada UR (Unidade Remota), ou seja, a informação de nível do reservatório para o qual uma determinada elevatória recalca água é lida do reservatório e enviada para a elevatória.

O operador do sistema supervisório pode efetuar comandos para as estações tais como: bloquear o funcionamento, alterar parâmetros de setpoints do grupo motobomba, ajustar setpoint de controle PID, ligar e desligar os grupos entre outros comandos que serão comentados a seguir.

Todas as comunicações partem da CCO que é dotada de uma antena omni direcional.

Software supervisório SCADA

Este tópico é ilustrativo e demonstra as linhas gerais que orientarão o desenvolvimento do software supervisório.

O software é configurado com HAIWELL SCADA e gravado no disco rígido do microcomputador da central, contendo todas as condições operacionais e controles tais como, por exemplo, níveis de reservatório e comando de motores.

Neste software o operador tem a possibilidade de especificar as condições de setpoints para ligamento e desligamento de bombas, pressão mínima de sucção, além de comandar manualmente os motores e visualizar todas as medições de grandezas elétricas e hidráulicas.

O software contém telas ilustradas artisticamente, com desenhos de reservatórios e motores, com diferentes cores para identificar diferentes estados de funcionamento dos motores. Além disso, fornece relatórios periódicos e online de todas as leituras do sistema. Nas telas também aparecem os alarmes de pane do sistema de maneira visual e sonora.

São registradas em arquivos armazenados no disco rígido do microcomputador, as informações dos últimos xx meses.

Neste item são dadas instruções genéricas e são feitas observações sobre os padrões de representação adotados na configuração do software supervisório.

Tela de abertura

É a tela que surge quando o software é iniciado. Todas as telas são organizadas com uma barra de Menu no topo. A barra de Menu é composta de uma caixa de seleção que dá acesso às diversas telas do aplicativo e de botões para acesso direto às janelas de históricos, alarmes, comunicações, macromedidores, reservatórios e teclas que permitem avançar para a próxima estação ou retroceder para a anterior.

Tela de login

A tecla de Login permite registrar os usuários e dar acesso às funcionalidades do sistema conforme as permissões de cada um.

Tela de reservatórios

Esta tela mostra os reservatórios, apresentando os níveis em metros de coluna d’água, porcentagem e volume cúbico de cada reservatório.


A tela específica de cada reservatório é ativada clicando sobre o desenho do mesmo.

  • A tela de reservatório apresenta o valor do nível em metros, metros cúbicos e em percentual.
  • O indicador de vazão apresenta a leitura instantânea da vazão em litros por segundo.
  • O quadro de GERAL sinaliza a alimentação pela bateria, a porta do painel aberta, invasão, o alarme sonoro ativado.
  • Clicando sobre o botão CALA ALARME SONORO é possível silenciar o alarme sonoro.
  • Clicando sobre o botão ZERA TOTALIZADOR é possível zerar o totalizador de vazão do macromedidor.

Sempre que um botão é clicado, um comando é enviado para o reservatório e aparece a mensagem Comando enviado. Quando a estação receber este comando, responderá com a mensagem Comando Recebido.

Janela de ajustes dos reservatórios

Clicando no botão Parâmetros Ajustáveis presente na tela dos reservatórios, faz surgir à janela de ajuste de parâmetros ajustáveis dos reservatórios. Essa tela permite ajustar para cada reservatório, os seguintes parâmetros:

  • Máximo – valor máximo de altura útil do reservatório;
  • Alarme baixo – valor do nível para indicação do alarme por nível baixo do reservatório;
  • Alarme alto – valor do nível para indicação do alarme por nível de extravasão do reservatório;
  • Volume – valor máximo do volume em metros cúbicos do reservatório.

Tela de macromedidores

Esta tela apresenta os valores do acumulador de volume e as vazões instantâneas lidas pelos macromedidores.

Para o zeramento do totalizador de vazão, acesse a tela do respectivo reservatório e clique no botão Zera Totalizador.

Tela de elevatórias

As telas de elevatória são funcionalmente semelhantes à tela abaixo. Permitem visualizar e atuar sobre o funcionamento da elevatória sendo mostrada.

O quadro Grandezas Elétricas indica as tensões, correntes e fator de potência na entrada dos CCMs dos motores. As Condições de Operação da estação indicam os alarmes que bloqueiam o funcionamento da elevatória, caso algum indicador esteja piscante deverá ser verifica a causa para que seja possível religar o grupo selecionado. As condições gerais da estação são mostradas na indicação Geral.

No quadro ao lado, temos as indicações do grupo selecionado, indicador do motivo de parada da motobomba e Comandos Gerais, os botões que enviam comandos para a estação, sendo respectivamente de cima para baixo, bloqueia o funcionamento automático, libera o funcionamento automático e cala alarme sonoro.

Quando na situação Bloqueado pelo CCO, é possível ligar ou desligar cada grupo individualmente, conforme disposição da chave de seleção de grupo. Isto é feito clicando nos botões que estão localizados abaixo do grupo motobomba.

Sempre que um botão é clicado, um comando é enviado para a elevatória e aparece a mensagem Comando enviado. Quando a estação receber este comando, responderá com a mensagem Comando Recebido.

Lógica de Funcionamento de Estações Elevatória

Os equipamentos e softwares integrantes do sistema de automação das remotas foram projetados e desenvolvidos visando à padronização das estações. O software foi escrito obedecendo aos conceitos de programação estruturada e orientação a objeto.

O sistema de automação das elevatórias tem por objetivo acionar os grupos motores bomba de maneira a manter o nível dos reservatórios abastecidos pelas elevatórias, dentro de valores programados. A informação de nível de cada reservatório é enviada à elevatória respectiva pelo microcomputador localizado no CCO.

O bombeamento somente é acionado se as condições básicas de operação estão satisfeitas. A elevatória é impedida de bombear por:

  • Chave local em manual
  • Bloqueado pela ETA
  • Subtensão na rede
  • Sobretensão na rede
  • Pressão baixa na sucção
  • Reservatório cheio
  • Perda da leitura do nível
  • Grupo selecionado em falha

O sistema de automação é composto por um CLP abrigado em quadro elétrico juntamente com os demais dispositivos.

Operação Manual Local

No Modo Manual o painel de automação não atua sobre o comando das bombas, neste modo, as bombas são comandas pelo operador diretamente nos quadros de comando respectivos e o painel de automação somente lê os sinais disponíveis e prove comunicação com o concentrador de comunicação localizado no CCO, tais como as grandezas elétricas, hidráulicas e entradas digitais.

SEMPRE QUE UMA OPERAÇÃO DE MANUTENÇÃO FOR REALIZADA, A PRIMEIRA AÇÃO DEVERÁ SER A DE COLOCAR O SISTEMA EM MODO MANUAL. ISTO É FEITO POSICIONANDO A CHAVE SELETORA NA POSIÇÃO MANUAL.

Para operar o sistema manualmente é necessário:

  • Girar as seletoras A/M para a posição MANUAL.
  • Aguardar que os grupos sejam desligados.
  • Operar manualmente os grupos pelas chaves localizadas nos painéis de acionamentos existentes.

Operação Automática

No Modo Automático o comando das bombas se dá integralmente através do painel de automação, com base no programa aplicativo carregado no CLP e de acordo com o nível do reservatório de recalque, seguindo o já descrito nessa seção, e executando as funções de leitura e comunicação descritas no Modo Manual.

Para operar o sistema automaticamente é necessário:

  • Desligar os grupos;
  • Girar a seletora A/M para a posição AUTOMÁTICO;
  • Aguardar a entrada dos grupos.

Operação Manual Remoto

No Modo Via Telemetria, a estação pode ser comandada via central de operação, sendo possível realizar todas ações previstas para cada elevatória, sempre a critério e responsabilidade do operador sem interferência do programa aplicativo carregado no CLP, exceto as que envolvam segurança operacional e de monitoração, tais ações, como ativação e desativação da elevatória, ligar e desligar grupos e alterar a seleção de grupo principal e etc.  A operação via telemetria é executada por comandos chamados Ativação e Desativação.

Para operar o sistema via telemetria é necessário selecionar a tela da estação desejada e:

  • Selecionar BLOQUEIO PELO CCO;
  • Comandar os GRUPOS pelos respectivos botões de Liga e Desliga;
  • Aguardar a entrada dos grupos.

Janela de parâmetros ajustáveis das elevatórias

Ao clicar no botão Parâmetros Ajustáveis, mostrará a tela de ajustes dos parâmetros ajustáveis das estações elevatórias. Nesta tela de parâmetros ajustáveis, são alterados os valores de set points de ligamento e desligamento do grupo motobomba, valores de proteção do motor, sendo subtensão, sobretensão, subcorrente e sobrecorrente, também possui proteção por pressão mínima na sucção e desligamento automático da motobomba por tempo de falta de comunicação do reservatório com a elevatória.

Tela de comunicações

Cada estação está representada pela figura de um rádio. Os rádios possuem um indicador numérico que mostra o tempo, em segundos, desde a última comunicação bem-sucedida. A cada nova comunicação, o mostrador é zerado e a cor muda para amarelo. Se o tempo desde a última comunicação exceder 120 segundos, o mostrador muda para cor vermelha.

Para habilitar a comunicação com cada estação, clique no botão Menu no canto esquerdo inferior da tela, em seguida clique no botão Devices management, que abrirá uma tela com todos os dispositivos configurados para comunicação com o supervisório. Para habilitar ou desabilitar um dispositivo, clique na caixa da coluna Enable da respectiva estação.

Esta tela permite habilitar e desabilitar a comunicação de cada estação de forma que estações não operantes não prejudiquem o desempenho do sistema.

Tela de históricos

A tela de histórico mostra na forma de tabela os valores armazenados no arquivo histórico.

Para configurar a pesquisa no histórico, selecione a estação desejada na caixa de seleção e ajuste as datas de início e fim da pesquisa, assim como os horários iniciais e finais. Após ajustado, clicar no botão Generate report.

  • Para exportar o relatório histórico clicar no botão Export.
  • Para imprimir, clicar no botão Print.

Gráfico histórico

Para visualizar os dados históricos em forma gráfica, clique sobre o botão Gráfico. Isso faz abrir uma janela de configuração do gráfico histórico selecionado. Para configurar a pesquisa no gráfico histórico, ajuste as datas de início e fim da pesquisa, assim como os horários iniciais e finais clicando no botão Select time interval. Após ajustado, clicar no botão Refresh.

O gráfico mostrará os valores das variáveis em formato percentual, desta maneira, podemos observar em uma única escala valores de diferentes fundos de escala.

Tela de alarmes ativos

Ao clicar no botão localizado na parte inferior da tela com o símbolo  “i”  ou este “46” que mostra a quantidade de alarme ativos.

Permitirá visualizar na forma de tabela, os alarmes ocorridos e registrados no arquivo de alarmes. Podemos reconhecer os alarmes ativos e verificar quais alarmes retornaram ao seu valor normal de operação, para reconhecer os alarmes clique no botão Confirm the alarm para confirmar somente um alarme selecionado, ou clique no botão Confirm all alarm para confirmar todos os alarmes ativos.

Na aba History alarm podemos pesquisar todos os alarmes históricos desde a inicialização do supervisório, mas somente podemos visualizar sem ações de exportação ou impressão.

Tela de alarmes históricos

Esta tela permite visualizar na forma de tabela, os alarmes ocorridos e registrados no arquivo de alarmes em histórico.

Para configurar a pesquisa dos alarmes, selecione a estação desejada na caixa de seleção e ajuste as datas de início e fim da pesquisa, assim como os horários iniciais e finais. Após ajustado, clicar no botão Generate report.

Os alarmes são registrados no momento que ocorre a mudança do bit de alarme de false para true e vice-versa. No entanto, o relatório salva o momento da mudança do bit, representando-o com o valor “zero” no momento da ocorrência, como pode ser visto na tela abaixo.

  • Para exportar o relatório de alarmes clicar no botão Export.
  • Para imprimir, clicar no botão Print.

Início e Fim de Operação

O aplicativo é ativado através do ícone do Haiwell Scada Runtime localizado na área de trabalho do computador, para iniciar o sistema deve-se clicar duas vezes sobre o ícone.

Isso faz surgir uma janela onde se pode abrir o projeto localizado no computador local, utilizando o botão Run local project ou localizado na rede clicando no botão Run network Project. Encontre o arquivo com a extensão “hwrun” e execute o programa aplicativo.

Para fechar o programa utilize a sequência de teclas do Windows ALT+F4 ou clique no botão Menu localizado no canto inferior esquerdo da tela e clique em Quit.

Botões

Os botões podem ter, entre outras, as seguintes funções:

  • Trocar ou ativar telas;
  • Ativar funções. Ex: ligar motor, zerar horímetro, etc,
  • Fechar uma janela.

Programação de parâmetros

Algumas telas possuem campos para a entrada de valores (setpoints). Para entrar com um valor, clique com o mouse sobre o campo desejado, digite o valor e pressione a tecla OK do teclado. Cada campo possui valores mínimos e máximos permitidos. Valores fora dos limites são rejeitados.

Janelas de confirmação

Janelas de confirmação surgem quando clicamos em alguns objetos ou botões, solicitando a confirmação ou não daquela atitude. Veja exemplo abaixo.

Solicite o template completo e sem custo aqui


 

Haiwell Cloud SCADA

O software Haiwell Cloud SCADA é baseado em .NET Framework e permite a monitoração e controle de processos industriais. Também é o software utilizado para configurar a linha de IHMs (Interfaces Homem-Máquina) da Haiwell. O Haiwell Cloud SCADA completo e sem limitações está disponível para download sem custos.

[button_2 align=”center” href=”https://alfacompbrasil.com/haiwell-cloud-scada-2/”%5DSaiba mais sobre o Haiwell Cloud SCADA e baixe a ferramenta[/button_2]
Haiwell Cloud SCADA

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”4810, 4547, 4453, 4389, 4326, 4246, 4171, 4153″ text_color=”undefined” hide_author=”” ][/recent_posts]
 
 
 
 
 

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

Projeto de automação e telemetria de uma estação elevatória de água tratada

Este artigo contendo o Projeto de automação e telemetria de uma elevatória de água tratada é o nono da série Tudo sobre telemetria do abastecimento municipal de água“.

Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.

Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.

[button_2 align=”center” href=”https://alfacompbrasil.com/2019/04/12/telemetria-de-agua/”%5DLeia o artigo: TUDO SOBRE A TELEMETRIA DO ABASTECIMENTO MUNICIPAL DE ÁGUA[/button_2]

Neste artigo apresentamos o projeto completo de hardware e software para a automação, controle e telemetria de uma estação elevatória de água tratada.

O link abaixo contém o arquivo compactado contendo o projeto completo.

[file_download style=”1″][download title=”Projeto%20de%20automa%C3%A7%C3%A3o%20da%20elevat%C3%B3ria” icon=”style2-thumb-dl-pdf.png” file=”https://alfacompbrasil.com/wp-content/uploads/2019/08/Projeto-de-automação-da-elevatória.zip” package=”” level=”” new_window=””]Projeto%20completo%20de%20automa%C3%A7%C3%A3o%20e%20telemetria%20de%20uma%20elevat%C3%B3ria%20de%20%C3%A1gua%20tratada%20contendo%20esquem%C3%A1tico%2C%20software%20Ladder%20e%20o%20Manual%20de%20Projeto%20e%20Utiliza%C3%A7%C3%A3o.[/download][/file_download]

Descrição geral do funcionamento da elevatória de água tratada

A forma mais usual para garantir o abastecimento de água em um bairro ou região de um município consiste em construir reservatórios em pontos elevados da área atendida, ou construir reservatório elevados quando a região é plana. A água é conduzida aos pontos de consumo por gravidade e o sistema de abastecimento municipal tem como missão, manter os reservatórios abastecidos.

Cabe à estação elevatória de água a função de manter o reservatório abastecido. Para tanto, a informação do nível do reservatório deve ser transmitida à elevatória para que essa, por sua vez, comande o funcionamento dos grupos moto bombas de maneira a manter o reservatório sempre com o nível dentro dos níveis predefinidos de operação.

A informação de nível de cada reservatório é repassada à sua respectiva estação elevatória pelo sistema da comunicação via rádio, centralizado no CCO.

Nesse tipo de configuração o reservatório terá dois níveis (set points) pré-definidos pela operação:

  • Nível de liga: O nível de liga é mais baixo que o nível de desliga e é aquele nível, que quando atingido, indica para a lógica de comando da elevatória que o grupo moto-bomba deve ser ligado.
  • Nível de desliga: O nível de desliga é mais alto que o nível de liga e é aquele nível, que quando atingido, indica para a lógica de comando da elevatória que o grupo moto-bomba deve ser desligado.

 

A figura acima apresenta uma topologia típica de uma elevatória de água tratada  de um sistema de distribuição de água tratada municipal. O diagrama mostra os componentes básicos de uma elevatória composta por dois conjuntos moto bomba, principal e reserva, e apresenta também o reservatório abastecido por essa elevatória, que pode estar distante quilômetros da elevatória.

Para controlar o funcionamento da estação elevatória, o CLP local monitora os seguintes parâmetros locais e remotos:

  • Nível do reservatório (remoto): enviado pelo CCO;
  • Alarme de perda da informação do nível;
  • Pressão de sucção: pressão na entrada das bombas, o bombeamento não pode acontecer se não houver pressão mínima;
  • Pressão de recalque: pressão na saída das bombas;
  • Tensão da rede: as bombas não podem operar se a tensão estiver fora dos mínimos e máximos definidos;
  • Corrente elétrica das bombas: deve ser monitorada para garantir a segurança das bombas e para detectar desgastes preventivamente;
  • Fator de potência: deve ser monitorado para garantir o controle de consumo elétrico;
  • Temperatura e vibração dos mancais dos motores: visa detectar e prevenir desgastes dos motores;
  • Sinais digitais de motores desarmados;
  • Sinais digitais de chaves de comando manual/automático e local/remoto. 

Operação da estação elevatória de água

Para que o sistema opere corretamente, as chaves seletoras das bombas e das válvulas devem estar na posição AUTOMÁTICO (comandadas pelo CLP). O sistema funciona automaticamente após a energização do quadro e ligando a chave GERAL.

Operação manual

No Funcionamento Manual o painel de automação não atua sobre o comando das bombas. Em Manual, as bombas são comandas pelo operador diretamente nos quadros de comando respectivos. Durante a operação manual, o painel de automação lê as grandezas elétricas e hidráulicas, executa as comunicações com a central, e monitora entradas digitais. Nesse modo de funcionamento, um operador pode ligar e desligar as bombas localmente nos respectivos quadros de acionamento das mesmas (comando manual).

SEMPRE QUE UMA OPERAÇÃO DE MANUTENÇÃO FOR SER REALIZADA, A PRIMEIRA AÇÃO DEVERÁ SER A DE COLOCAR O SISTEMA EM MANUAL. ISTO É FEITO POSICIONANDO A CHAVE SELETORA NA POSIÇÃO MANUAL.
Para desativar o sistema e operar manualmente as bombas e válvulas é necessário:

  • Girar as seletoras A/M para a posição MANUAL;
  • Aguardar que os grupos sejam desativados. Esta operação se dá sequencialmente;
  • Operar manualmente os grupos pelas chaves localizadas no painel frontal.

Operação automática

Neste modo, o acionamento das bombas se dá de acordo com o nível do reservatório de recalque e monitora as condições de operação. Lê as grandezas elétricas e hidráulicas, executa as comunicações com a central e monitora entradas e saídas digitais.

Para selecionar o sistema para controle automático, é necessário:

  • Girar as seletoras A/M para a posição AUTOMÁTICO.
  • Aguardar a parada dos equipamentos.
  • Aguardar a entrada sequencial dos grupos.

Comando via telemetria

Quando em automático, a estação pode ser comandada via central de telemetria. É possível desativar e reativar o funcionamento da elevatória, ligar e desligar grupos e alterar a seleção de grupo principal.

Comandos de ativação e desativação da elevatória de água

Bloqueio – A elevatória é desativada fazendo a posição 0 da tabela de setpoints diferente de zero. Isto faz com que o CLP desative os grupos sequencialmente. Este modo de operação é chamado Manual Remoto.

Desbloqueio – A elevatória é ativada fazendo a posição 0 da tabela de setpoints igual a zero. Isto permite que o CLP opere automaticamente.

Composição da remota de telemetria

A figura a seguir mostra o bloco diagrama da remota de telemetria utilizada na automação da estação elevatória:

  • Fonte com bateria modelo 2061;
  • Rádio modem RM2060;
  • CLP Haiwell modelo T48S0P com 28 ED e 20 SD;
  • Interface IA2820 com 8 entradas em 4 a 20 mA;
  • Interface ID2908 com 8 saídas isoladas a relé.

Painel de telemetria PT5520

Baseado no CLP Haiwell modelo C48S0P, o painel apresenta alto índice de integração, modularidade, facilidade de manutenção e protocolo MODBUS RTU mestre e escravo, resultando em uma montagem de alto desempenho e baixo custo.

O CLP com duas portas seriais comunica por protocolo MODBUS RTU mestre e escravo e está programado para controlar e monitorar:

  • Pressões de sucção e recalque:
  • Operação de grupos motobomba;
  • Multimedidores de grandezas elétricas;
  • Invasão;
  • Falta de energia;
  • Painel aberto;

Características técnicas do painel de telemetria

CLP Haiwell C48S0P 28ED 20SD
IHM IHM 4,3″ monocromática – TP300
Elemento de comunicação Rádio modem RM2060
Alimentação Fonte carregadora com bateria e autonomia de 12 horas
Entradas analógicas 08 entradas analógicas em 4 a 20 mA protegidas contra surtos
Saídas analógicas 02 saídas 4 a 20mA com módulos Alfacomp IA2801
Entradas digitais 24 entradas digitais em 24V livres
Saídas digitais 16 saídas digitais, sendo 08 isoladas a réle pelo módulo ID2908
Iluminação Módulo SW3301 com 12 LEDs brancos de alta intensidade
Indicação de porta aberta Sensor de porta aberta conectado ao CLP
Indicação de alimentação Sensor indica alimentação pela rede ou pela bateria
Dimensões Altura 60 x Largura 40 x Profundidade 20 cm
Grau de Proteção IP54 (*consulte outros modelos)
Proteção da alimentação DPS SW3300

Componentes do painel de telemetria

Qtd. Modelo Descrição
1 Haiwell C48S0P CLP com 28 entradas digitais, 20 saídas digitais, porta serial RS232 e RS485, e porta Ethernet
1 IHM TP300 IHM 4,3″ monocromática, 4 linhas x 24 colunas
1 Elemento de Comunicação Rádio modem RM2060
1 Alfacomp – 2061 Fonte de alimentação com bateria
1 Alfacomp – SW3300 Seccionador e protetor com tomada
1 Alfacomp – SW3301 Iluminador de painel com chave fim de curso
1 Alfacomp – IA2820 Interface analógica multiplexada para 8 entradas em 4 a 20mA
2 Alfacomp – IA2801 Interface analógica com 1 saída em 4 a 20mA
1 Alfacomp – ID2908 Isolador a relés para 8 saídas digitais
1 Alfacomp – CN3203 Protetor contra surtos para cabo de RF com conexões N-fêmea (se o elemento de comunicação for rádio)
1 Alfacomp – CB3100 Cabo interno de RF (se o elemento de comunicação for rádio)
1 Cemar – CS-6040-20 Quadro de comando metálico
1 Cemar – BT-7 VD Barra de terra
3 Porta fusível Borne porta fusível
24 Borne Borne Modular 2,5 mm
9 Poste Poste Clip Fix 35-5

Materiais diversos utilizados na instalação da remota de telemetria

Qtd. Descrição
1 Antenas conforme definido no projeto de rádio
2 Conector N macho para cabo RGC 213
1 Cabo externo de RF RGC213
1 Mastro de antena conforme definido no projeto de rádio
1 Materiais diversos de montagem de campo

Esquema elétrico do quadro de automação – Remota de elevatória

Software de controle da estação elevatória

A programação do CLP que controla a estação elevatória é feita em Ladder.

A figura a seguir apresenta os módulos de rotinas que compõe a programação da estação.

Lista de entradas e saídas

Entradas analógicas

Entrada Descrição Escala Faixa de medição Memória
E0 Pressão de recalque 250 a 1250 0 a 100,0 mca V40
E1 Pressão de sucção 250 a 1250 0 a 100,0 mca V41
E2 250 a 1250 V42
E3 250 a 1250 V43
E4 250 a 1250 V44
E5 250 a 1250 V45
E6 250 a 1250 V46
E7 250 a 1250 V47

Entradas digitais

CLP – C48S0P
Entrada Descrição Memória
X0 Pulsos do módulo IA2820 X0
X1 Indicação de CA presente X1
X2 Intrusão no painel X2
X3 Chave do painel de telemetria em MANUAL / AUTOMATICO X3
X4 Invasão na estação X4
X5 X5
X6 MB01 em manual X6
X7 MB01 em automático X7
X8 MB02 em manual X8
X9 MB02 em automático X9
X10 X10
X11 X11
X12 Confirmação da MB01 X12
X13 Confirmação da MB02 X13
X14 X14
X15 Grupo selecionado X15
X16 X16
X17 X17
X18 X18
X19 X19
X20 X20
X21 X21
X22 X22
X23 X23
X24 X24
X25 X25
X26 X26
X27 X27

Saídas digitais

CLP – C48S0P
Saída Descrição Memória
Y0 Alarme sonoro Y0
Y1 Y1
Y2 Comando liga/desliga MB01 Y2
Y3 Comando liga/desliga MB02 Y3
Y4 Y4
Y5 Y5
Y6 Y6
Y7 Y7
Y8 Y8
Y9 Y9
Y10 Y10
Y11 Y11
Y12 Y12
Y13 Pulsos para atualização do módulo IA2801 Y13
Y14 Pulsos para atualização do módulo IA2801 Y14
Y15 Sinal SL0 de seleção de canal do módulo IA2820 Y15
Y16 Sinal SL1 de seleção de canal do módulo IA2820 Y16
Y17 Sinal SL2 de seleção de canal do módulo IA2820 Y17

Mapa de memórias do CLP

Memória Descrição Tipo Tag Sub-rotina
Memórias internas não retentivas – M0 a M28
M0 BOOL
M1 BOOL
M2 BOOL
M3 BOOL
M4 Subtensão na rede BOOL SUB_V1 PGB:ANALISE_EAT1
M5 Sobretensão na rede BOOL SOBRE_V1 PGB:ANALISE_EAT1
M6 Nível remoto cheio BOOL NR_CHEIO PGB:ANALISE_EAT1
M7 Subcorrente dos motores BOOL SUB_I1 PGB:ANALISE_EAT1
M8 Sobrecorrente dos motores BOOL SOBRE_I1 PGB:ANALISE_EAT1
M9 BOOL
M10 Automático bloqueado pelo CCO BOOL BLOQ_AUT1 PGB:ANALISE_EAT1 PGB:CMD    PGB:GRP_EAT1
M11 BOOL
M12 Pressão mínima na sucção BOOL PS1_MIN PGB:ANALISE_EAT1
M13 MB01 desativada BOOL EAT1_1_OFF PGB:ANALISE_EAT1
M14 MB02 desativada BOOL EAT1_2_OFF PGB:ANALISE_EAT1
M15 BOOL BLOQ_AUT1
M16 Falha dos motores BOOL FALHA1 PGB:ANALISE_EAT1
M17 Ativa alarme sonoro BOOL ALR ON PGB:ALARME
M18 Funcionamento OK da elevatória BOOL EAT1_OK PGB:GRP_EAT1
M19 Nível remoto baixo BOOL NR_BAIXO PGB:GRP_EAT1
M20 BOOL
M21 BOOL
M22 Liga/desliga MB01 – modo bloqueado BOOL MB01_1 PGB:CMD  PGB:GRP_EAT1
M23 Liga/desliga MB02 – modo bloqueado BOOL MB02_1 PGB:CMD  PGB:GRP_EAT1
M24 Desativa/reseta alarme sonoro BOOL RST ALR REMOTO PGB:ALARME PGB:CMD
M25 BOOL
M26 BOOL
M27 Nível remoto atualizado BOOL NR ATUALIZADO PGB:ANALISE_EAT1
M28 Nível remoto perdido BOOL NR PERDIDO PGB:ANALISE_EAT1
Memórias internas especiais – SM0 a SM5
SM0 Ligado enquanto CLP em modo RUN BOOL On during Running
SM2 Ligado durante a primeira varredura BOOL On during the first
SM5 Pulso a cada 1 segundo BOOL 1s clock pulse
Timers – T0 a T15
T0 TIMER
T1 TIMER
T2 Aguarda 30s para alarmar subtensão TIMER SUBV PGB:ANALISE_EAT1
T3 Aguarda 30s para alarmar sobretensão TIMER SOBREV PGB:ANALISE_EAT1
T4 Aguarda 30s para alarmar nível remoto cheio TIMER NR_CHEIO PGB:ANALISE_EAT1
T5 Aguarda 60s para alarmar subcorrente TIMER SUB_SOBRE_I PGB:ANALISE_EAT1
T6 Aguarda 60s para alarmar nível remoto perdido TIMER NR_PERDIDO PGB:ANALISE_EAT1
T7 Aguarda 30s para alarmar pressão de sucção baixa TIMER PS1_MIN PGB:ANALISE_EAT1
T8 Aguarda 30s para alarmar MB01 desarmou TIMER MB01_1_DESARMOU PGB:ANALISE_EAT1
T9 Aguarda 30s para alarmar MB02 desarmou TIMER MB02_1_DESARMOU PGB:ANALISE_EAT1
T10 Aguarda 10s para ligar MB01 TIMER LIGA_MB01_1 PGB:GRP_EAT1
T11 Aguarda 10s para desligar MB01 TIMER DESL_MB01_1 PGB:GRP_EAT1
T12 Aguarda 10s para ligar MB02 TIMER LIGA_MB02_1 PGB:GRP_EAT1
T13 Aguarda 10s para desligar MB02 TIMER DESL_MB02_1 PGB:GRP_EAT1
T14 Debounce de 3s para acionar alarme sonoro TIMER DEBOUNCE ALR PGB:ALARME
T15 Rearma remotamente alarme sonoro após 10min TIMER DEBOUNCE ALR2 PGB:ALARME
Contadores 16bits – C0 a C3
C0 CTU
C1 CTU
C2 Contador do horímetro da MB01 CTU CONT_HORIM1 PGB:GRP_EAT1
C3 Contador do horímetro da MB02 CTU CONT_HORIM2 PGB:GRP_EAT1
Registradores retentivos – V0 a V209
V0 Pressão de recalque WORD Pressao1 PGB:ESCALA_PRESSAO PGB:IHM_TP300
V1 Pressão de sucção WORD Pressao2 PGB:ESCALA_PRESSAO PGB:ANALISE_EAT1
V2 Cópia do comando enviado pelo CCO WORD Cmd_Rx PGB:CMD
V3 Segundos de 0 a 59s WORD Segundeiro PGB:MAIN
V4 Bit de status WORD Status PGB:BITS_STATUS
V5 Condições de operação da elevatória WORD Cond_Op1 PGB:ANALISE_EAT1

 

Memória Descrição Tipo Tag Sub-rotina
V6 Motivo de parada da elevatória WORD Parada1 PGB:ANALISE_EAT1 PGB:GRP_EAT1
V7 Tensão da fase R WORD VR1 PGB:ANALISE_EAT1 PGB:MULT_MEDIDOR
V8 Tensão da fase S WORD VS1 PGB:ANALISE_EAT1 PGB:MULT_MEDIDOR
V9 Tensão da fase T WORD VT1 PGB:ANALISE_EAT1 PGB:MULT_MEDIDOR
V10 Corrente da fase R WORD IR1 PGB:ANALISE_EAT1 PGB:MULT_MEDIDOR
V11 Fator de potência WORD Fator1 PGB:MULT_MEDIDOR
V12 Horímetro da MB01 WORD Horim1_MB01 PGB:CMD   PGB:GRP_EAT1
V13 Horímetro da MB02 WORD Horim2_MB02 PGB:CMD   PGB:GRP_EAT1
V14 Estado da MB01 WORD Estado1 PGB:BITS_STATUS
V15 Estado da MB02 WORD Estado2 PGB:BITS_STATUS
V16 Falha da MB01 WORD Falha1 PGB:ANALISE_EAT1 PGB:CMD
V17 Falha da MB02 WORD Falha2 PGB:ANALISE_EAT1 PGB:CMD
V18 Corrente da fase S WORD IS1 PGB:ANALISE_EAT1 PGB:MULT_MEDIDOR
V19 Corrente da fase T WORD IT1 PGB:ANALISE_EAT1 PGB:MULT_MEDIDOR
V38 Contador das saídas digitais para multiplexagem WORD Count Multiplex PGB:IA2820
V39 Contador de pulsos da IA2820 WORD Pulsos IA2820 PGB:IA2820 INT:LE_IA2820
V40 Valor da entrada analógica E0 – 0 a 1250 WORD EA0 PGB:IA2820 PGB:ESCALA_PRESSAO
V41 Valor da entrada analógica E1 – 0 a 1250 WORD EA1 PGB:IA2820
PGB:ESCALA_PRESSAO
V42 Valor da entrada analógica E2 – 0 a 1250 WORD EA2 PGB:IA2820
V43 Valor da entrada analógica E3 – 0 a 1250 WORD EA3 PGB:IA2820
V44 Valor da entrada analógica E4 – 0 a 1250 WORD EA4 PGB:IA2820
V45 Valor da entrada analógica E5 – 0 a 1250 WORD EA5 PGB:IA2820
V46 Valor da entrada analógica E6 – 0 a 1250 WORD EA6 PGB:IA2820
V47 Valor da entrada analógica E7 – 0 a 1250 WORD EA7 PGB:IA2820
V52 Preset do fundo de escala do sensor de pressão1 WORD Preset pressao1 PGB:INICIALIZACAO PGB:ESCALA_PRESSAO PGB:IHM_TP300
V53 Preset do fundo de escala do sensor de pressão2 WORD Pulsos pressao2 PGB:INICIALIZACAO PGB:ESCALA_PRESSAO PGB:IHM_TP300
V58 Variável para cálculo em ponto flutuante WORD Rascunho_Float1 SUB:CONV_TENSAO SUB:CONV_CORRENTE
SUB:CONV_FATOR
V59 Variável para cálculo em ponto flutuante WORD Rascunho_Float2 SUB:CONV_TENSAO SUB:CONV_CORRENTE
SUB:CONV_FATOR
V60 Variável para cálculo em ponto flutuante WORD Rascunho_Float3 SUB:CONV_TENSAO SUB:CONV_CORRENTE
SUB:CONV_FATOR
V61 Variável para cálculo em ponto flutuante WORD Rascunho_Float4 SUB:CONV_TENSAO SUB:CONV_CORRENTE
SUB:CONV_FATOR
V62 Variável para cálculo em ponto flutuante WORD Rascunho_Float5 SUB:CONV_TENSAO SUB:CONV_CORRENTE
SUB:CONV_FATOR
V63 Variável para cálculo em ponto flutuante WORD Rascunho_Float6 SUB:CONV_TENSAO SUB:CONV_CORRENTE
SUB:CONV_FATOR
V72 Identifica o grupo selecionado WORD GRP_SEL PGB:BITS_STATUS PGB:IHM_TP300
V73 Acumulador da contagem de tempo do nível remoto WORD TEMPO_AC PGB:ANALISE_EAT1
V74 Cópia do valor do nível remoto enviado do CCO WORD NR1_TEMP PGB:ANALISE_EAT1
V100 Comando enviado pelo CCO WORD Cmd PGB:CMD
V101 Preset de subtensão na rede WORD Subi_V1 PGB:ANALISE_EAT1
V102 Preset de sobretensão na rede WORD Sobre_V1 PGB:ANALISE_EAT1
V103 Preset de subcorrente dos motores WORD Subi_I1 PGB:ANALISE_EAT1
V104 Preset de sobrecorrente dos motores WORD Sobre_I1 PGB:ANALISE_EAT1
V105 Preset de nível de liga motor WORD NL1 PGB:GRP_EAT1 PGB:IHM_TP300
V106 Preset de nível de desliga motor WORD ND1 PGB:ANALISE_EAT1
V107 Preset de pressão mínima de sucção WORD PS1_min PGB:ANALISE_EAT1
V108 Preset de tempo para desligar por falta de envio do nível remoto WORD TEMPO_D1 PGB:ANALISE_EAT1

 

Memória Descrição Tipo Tag Sub-rotina
V109 Nível remoto WORD NR1 PGB:ANALISE_EAT1
V200 Valor de tensão da fase R lida do multimedidor WORD VR_MULT PGB:Main PGB:MULT_MEDIDOR
V201 Valor de tensão da fase S lida do multimedidor WORD VS_MULT PGB:MULT_MEDIDOR
V202 Valor de tensão da fase T lida do multimedidor WORD VT_MULT PGB:MULT_MEDIDOR
V203 Valor da corrente R lida do multimedidor WORD IR_MULT PGB:Main PGB:MULT_MEDIDOR
V204 Valor da corrente S lida do multimedidor WORD IS_MULT PGB:MULT_MEDIDOR
V205 Valor da corrente T lida do multimedidor WORD IT_MULT PGB:MULT_MEDIDOR
V206 WORD
V207 WORD
V208 WORD
V209 Valor do fator de potência lida do multimedidor WORD FATOR_MULT PGB:MULT_MEDIDOR

ICOM – Interface de comunicação

O mapeamento de memória utilizado para leitura e escrita do mestre de comunicação Modbus RTU chamamos de ICOM. As tabela abaixo agrupam as variáveis de leitura e escrita da ICOM.

  • Bloco de Memória de Monitoração (V0 a V19)
  • Bloco de Memória de Setpoints (V100 a V109)

Bloco de memória de monitoração (V0 a V19)

Este é o bloco de dados lidos pelo CCO.

Posição Tag Descrição Memória
00 Pressao1 Pressão de recalque V0
01 Pressao2 Pressão de sucção V1
02 Cmd_Rx Cópia do comando enviado pelo CCO V2
03 Segundeiro Segundos de 0 a 59s V3
04 Status Bit de status V4
05 Cond_Op1 Condições de operação da elevatória V5
06 Parada1 Motivo de parada da elevatória V6
07 VR1 Tensão da fase R V7
08 VS1 Tensão da fase S V8
09 VT1 Tensão da fase T V9
10 IR1 Corrente da fase R V10
11 Fator1 Fator de potência V11
12 Horim1_MB01 Horímetro da MB01 V12
13 Horim2_MB02 Horímetro da MB02 V13
14 Estado1 Estado da MB01 V14
15 Estado2 Estado da MB02 V15
16 Falha1 Falha da MB01 V16
17 Falha2 Falha da MB02 V17
18 IS1 Corrente da fase S V18
19 IT1 Corrente da fase T V19

Descrição da memória de monitoramento – STATUS

A memória Status contém 16 bits que são utilizados como status de funcionamento da estação, cada bit identifica uma ocorrência, sendo 0=false e 1=true.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
  • Bit 0 =0(bateria),     =1(rede CA)
  • Bit 1 =0(porta fechada),     =1( porta aberta)
  • Bit 2 =0(painel em manual),     =1(painel em automático)
  • Bit 3 =0(invasão sim),     =1(invasão não)
  • Bit 4 =0(alarme sonoro desligado),     =1(alarme sonoro ligado)
  • Bit 5  =0(seleção MB01),     =1( seleção MB02)

Descrição da memória de monitoramento – Cond_Op1

A memória Cond_Op1 contém 16 bits que são utilizados como status de funcionamento da estação, cada bit identifica uma ocorrência, sendo 0=false e 1=true. 

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
  • Bit 0 =0(normal),     =1(bloqueado pelo CCO)
  • Bit 1 =1(normal),     =1(subtensão)
  • Bit 2 =0(normal),     =1(sobretensão)
  • Bit 3 =0(normal),     =1(pressão de sucção baixa)
  • Bit 4 =0(normal),     =1(nível remoto cheio)
  • Bit 5 =0(normal),     =1(nível remoto perdido)
  • Bit 6 =0(normal),     =1(falha no grupo selecionado)
  • Bit 7 =0(normal),     =1(MB01 em manual)
  • Bit 8 =0(normal),     =1(MB01 desativada)
  • Bit 9 =0(normal),     =1(MB01 em automático)
  • Bit 10 =0(normal),    =1(MB02 em manual)
  • Bit 11 =0(normal),    =1(MB02 desativada)
  • Bit 12 =0(normal),    =1(MB02 em automático)

Descrição da memória de monitoramento – Parada1

A memória Parada1 é responsável por informar para o CCO o motivo da parada do grupo motobomba em funcionamento.

  • 00 = sem motivo
  • 01 = painel de telemetria em manual
  • 02 = bloqueado pelo CCO
  • 03 = subtensão na rede
  • 04 = sobretensão na rede
  • 05 = pressão de sucção baixa
  • 06 = nível remoto cheio
  • 07 = nível remoto perdido
  • 08 = grupo selecionado em falha
  • 09 = grupo selecionado em manual
  • 10 = grupo selecionado desativado

Descrição da memória de monitoramento – Estado1 / Estado2

As memórias Estado1 e Estado2 são responsáveis por informar para o CCO o status das bombas.

  • 00 = bomba desligada
  • 01 = bomba ligada

Descrição da memória de monitoramento – Falha1 / Falha2

As memórias Falha1 e Falha2 são responsáveis por informar para o CCO os códigos de falha das bombas.

  • 00 = sem falha
  • 01 = subcorrente
  • 02 = sobrecorrente
  • 03 = não utilizado
  • 04 = grupo desarmou

Bloco de memória de setpoints (V100 a V109)

Este é o bloco de parâmetros enviados pelo CCO.

Posição Tag Descrição Memória
00 Cmd Comando enviado pelo CCO V100
01 Subi_V1 Preset de subtensão na rede V101
02 Sobre_V1 Preset de sobretensão na rede V102
03 Subi_I1 Preset de subcorrente dos motores V103
04 Sobre_I1 Preset de sobrecorrente dos motores V104
05 NL1 Preset de nível de liga motor V105
06 ND1 Preset de nível de desliga motor V106
07 PS1_min Preset de pressão mínima de sucção V107
08 TEMPO_D1 Preset de tempo para desligar por falta de envio do nível remoto V108
09 NR1 Nível remoto V109

Descrição da memória de setpoint – Cmd

A memória Cmd é responsável por receber valores do CCO e executar comandos, que estão listados a seguir.

  • 00 = sem comando
  • 01 = não utilizado
  • 02 = não utilizado
  • 03 = bloqueia funcionamento automático
  • 04 = libera funcionamento automático
  • 05 = cala alarme sonoro
  • 06 = liga MB01
  • 07 = desliga MB01
  • 08 = liga MB02
  • 09 = desliga MB02
  • 10 = não utilizado
  • 11 = não utilizado
  • 12 = não utilizado
  • 13 = não utilizado
  • 14 = não utilizado
  • 15 = não utilizado
  • 16 = não utilizado
  • 17 = não utilizado
  • 18 = zera horímetro da MB01
  • 19 = zera horímetro da MB02
  • 20 = não utilizado
  • 21 = não utilizado
  • 22 = não utilizado
  • 23 = não utilizado
  • 24 = zera falha da MB01
  • 25 = zera falha da MB02

Operação da IHM

O IHM (Interface Homem Máquina) TP300 é composto de:

  • Monocromático de 4 linhas por 24 caracteres;
  • Display de 4,3”;
  • Resolução de 192 x 64 pixels;
  • Backlight;
  • Ajuste de contraste;
  • Portas de comunicação RS232 e RS485;
  • Possui 19 teclas que podem ser definidas como teclas de função;
  • Protocolos de comunicação para SIEMENS, Mitsubishi, OMRON, Schneider, Facon, entre outros fabricantes;
  • Possui protocolo Modbus RTU;

Teclas de Edição e Navegação

  • Para navegar entre as telas da IHM, pressione a seta para cima ou seta para baixo.
  • Nas telas que permitem edição, pressione SET para selecionar o campo de edição, quando selecionado ficará com o fundo branco.
  • Quando estiver em um campo de edição e precisar apagar o seu valor, pressionar CLR.
  • Para acessar um campo de edição ou confirmar o novo valor digitado, pressionar a tecla ENT.
  • Para sair de um campo de edição sem alterar o seu valor, pressione a tecla ESC.

Telas configuradas

Este item descreve as telas configuradas no projeto. Para navegar pelas telas, utilize as teclas de seta para cima e seta para baixo.

Tela 01 – Tela de apresentação

Tela de apresentação com nome da empresa contratante do sistema e com o nome da empresa que desenvolveu o software.

Tela 02 – Nível remoto

Apresenta o valor do nível do reservatório em percentual para o qual a elevatória bombeia a água tratada e o nível de liga e o nível de desliga.

Tela 03 – Pressão

Apresenta a pressão de recalque e sucção da elevatória.

Tela 04 – Rede CA

Apresenta o valor da tensão e corrente das fases R, S, T e o fator de potência da elevatória.

Tela 05 – Grupo selecionado

Apresenta o grupo selecionado na chave seletora do painel de acionamento do CCM da elevatória.

Tela 06 – Status da elevatória

Apresenta status da motobombas, motivo de parada do grupo e horímetros.

Tela 07 – Escala dos transmissores

Ajuste da escala dos transmissores de pressão de recalque e sucção da elevatória.

Multimedidor – ST9250R

As grandezas elétricas como corrente, tensão e fator de potência, são adquiridas pelo multimedidor de grandezas elétricas modelo ST9250R que se comunica com o CLP pela porta RS485 do CLP em protocolo MODBUS. Nesta porta, o CLP está configurado como endereço 1, 19200 bps, 8 bits, 1 stop bits e sem paridade. O multimedidor assume o endereço 1.

O manual do multimedidor pode ser baixado diretamente do site da Alfacomp no link: https://www.alfacomp.ind.br/medidores-e-indicadores/multimedidor-de-grandezas-eletricas.

Os registradores de grandezas elétricas ST9250R atuam como poderosos sistemas de monitoramento de energia elétrica, avaliando de forma contínua e em tempo real a tensão e a corrente nas três fases pelo método True RMS, permitindo o cálculo preciso de todos os itens de interesse.

Os parâmetros do registrador podem ser ajustados no próprio equipamento, através de uma interface amigável ou via interface serial padrão elétrico RS-485, pelo protocolo MODBUS-RTU.

Cálculo I

Para o cálculo do fator de potência.

  • Se valor entre 65536 e 64511, sinal indutivo (-) Fp = (65536 – VALOR) / 1024
  • Se valor entre 1024 e 0, sinal capacitivo (+) Fp = valor / 1024

Cálculo II

Para o cálculo de corrente, potência ativa, aparente, reativa, falta de Kvar e excesso de Kvar.

  • Variável = valor lido * (valor do TC / 5) / 1000

A resposta é uma variável quantizada (Qx) de acordo com a tabela de variáveis.
Definição do tamanho das variáveis

  • Int = Inteiros de 2 Bytes
  • Long = Inteiros de 4 Bytes
  • Variáveis em Q1, dividir por 2 para obter a parte inteira e a decimal
  • Variáveis em Q2, dividir por 4 para obter a parte inteira e a decimal
  • Variáveis em Q3, dividir por 8 para obter a parte inteira e a decimal
  • Variáveis em Q5, dividir por 32 para obter a parte inteira e a decimal
  • Variáveis em Q6, dividir por 64 para obter a parte inteira e a decimal
  • Variáveis em Q10, dividir por 1024 para obter a parte inteira e a decimal

Esquemas elétricos de ligações

As figuras a seguir mostram os esquemas de ligação para a instalação dos registradores ST9250R.

Observações importantes na instalação do equipamento

  • O transformador de corrente (TC) deve medir a corrente total a ser monitorada.
  • Deve-se colocar um TC específico para a medição de corrente (sempre na relação de transformação XXXX/5A). Caso já exista um instrumento de medição, a medição de corrente pode aproveitar o TC do instrumento, desde que a corrente do secundário do TC seja sempre ligada em série com a do medidor.
  • Deve-se colocar um TC específico para a medição de corrente (sempre na relação de transformação XXXX/5A). Caso já exista um instrumento de medição, a medição de corrente pode aproveitar o TC do instrumento, desde que a corrente do secundário do TC seja sempre ligada em série com a do medidor.

Endereços de memória do multimedidor

São os seguintes os parâmetros básicos de leitura Modbus do multimedidor, utilizando a função 0x04 (read input registers).

Endereço Variável Tipo Descrição
01 Vr Int Tensão da fase R (Q6)
02 Vs Int Tensão da fase S (Q6)
03 Vt Int Tensão da fase T (Q6)
04 Cr Int Corrente da fase R (Q3) – ver cálculo II
05 Cs Int Corrente da fase S (Q3) – ver cálculo II
06 Ct Int Corrente da fase T (Q3) – ver cálculo II
07 FPr Int Fator de potência da fase R – ver cálculo I
08 FPs Int Fator de potência da fase S – ver cálculo I
09 FPt Int Fator de potência da fase T – ver cálculo I
10 FPtt Int Fator de potência total – ver cálculo I
11 Pr Int Potência ativa da fase R (Q5) – ver cálculo II
12 Ps Int Potência ativa da fase S (Q5) – ver cálculo II
13 Pt Int Potência ativa da fase T (Q5) – ver cálculo II
14 HPtt High-Long Potência ativa total – ver cálculo II
15 LPtt Low-Long Potência ativa total – ver cálculo II
16 Qr Int Potência reativa da fase R (Q5) – ver cálculo II
17 Qs Int Potência reativa da fase S (Q5) – ver cálculo II
18 Qt Int Potência reativa da fase T (Q5) – ver cálculo II
19 HQtt High-Long Potência reativa total – ver cálculo II
20 LQtt Low-Long Potência reativa total – ver cálculo II
21 Sr Int Potência aparente da fase R (Q5) – ver cálculo II
22 Ss Int Potência aparente da fase S (Q5) – ver cálculo II
23 St Int Potência aparente da fase T (Q5) – ver cálculo II
24 HStt High-Long Potência aparente total – ver cálculo II
25 LStt Low-Long Potência aparente total – ver cálculo II
26 Freq Int Frequência (Q2)
27 HEat High-Long Energia ativa – ver cálculo II
28 LEat Low-Long Energia ativa – ver cálculo II
29 Demat Int Demanda ativa – ver cálculo II
30 H-Ereat High-Long Energia reativa – ver cálculo II
31 L-Ereat Low-Long Energia reativa – ver cálculo II
32 Demreat Int Demanda reativa – ver cálculo II
33 Dematm Int Demanda ativa média – ver cálculo II
34 Dematac Int Demanda ativa acumulada – ver cálculo II
35 Demapm Int Demanda aparente média – ver cálculo II
36 Demapac Int Demanda aparente acumulada – ver cálculo II
37 Kvaflt Int Valor de Kvars faltando – ver cálculo II
38 Kvaexce Int Valor de Kvars excedentes – ver cálculo II
39 Dematant Int Demanda ativa máxima do mês anterior – ver cálculo II
40 Demapant Int Demanda aparente máxima do mês anterior – ver cálculo II
41 Tensao rs Int Tensão entre fase R e S (Q6)
42 Tensao st Int Tensão entre fase T e S (Q6)
43 Tensao rt Int Tensão entre fase R e T (Q6)
44 TP rs Int Tensão no primário entre fase R e S (Q6)
45 TP st Int Tensão no primário entre fase T e S (Q6)
46 TP rt Int Tensão no primário entre fase R e T (Q6)
47 Ttri Int Tensão trifásica (Q6)
48 Ctri Int Corrente trifásica (Q3)

Download do projeto completo

[file_download style=”1″][download title=”Projeto%20de%20automa%C3%A7%C3%A3o%20da%20elevat%C3%B3ria” icon=”style2-thumb-dl-pdf.png” file=”https://alfacompbrasil.com/wp-content/uploads/2019/08/Projeto-de-automação-da-elevatória.zip” package=”” level=”” new_window=””]Projeto%20completo%20de%20automa%C3%A7%C3%A3o%20e%20telemetria%20de%20uma%20elevat%C3%B3ria%20de%20%C3%A1gua%20tratada%20contendo%20esquem%C3%A1tico%2C%20software%20Ladder%20e%20o%20Manual%20de%20Projeto%20e%20Utiliza%C3%A7%C3%A3o.[/download][/file_download]

Suporte para a implantação

Para mais informações ou ajuda técnica, conte com nosso suporte.
https://alfacompbrasil.com/suporte/ –  Whatsapp (51)99380.2956

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”4877, 2952, 2143, 2912, 4547, 1991, 3920, 3784, 3663″ text_color=”undefined” hide_author=”” ][/recent_posts]

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

Projeto de automação e telemetria de um reservatório de água tratada

Este artigo contendo o Projeto de automação e telemetria de um reservatório de água tratada é o décimo da série Tudo sobre telemetria do abastecimento municipal de água“.
Se você deseja elaborar e implantar um sistema de telemetria para os reservatórios e elevatórias de água e esgoto, ETAs e ETEs, estações reguladoras de pressão e pontos de macromedição, encontrará nessa série de artigos, todo o conhecimento necessário para projetar, construir e implantar sistemas completos.
Juntamente com os artigos, são fornecidos links para download de projetos elétricos completos dos painéis, assim como softwares Ladder para automação das estações e o software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água, tudo absolutamente sem custo.
[button_2 align=”center” href=”https://alfacompbrasil.com/2019/04/12/telemetria-de-agua/”%5DLeia o artigo: TUDO SOBRE A TELEMETRIA DO ABASTECIMENTO MUNICIPAL DE ÁGUA[/button_2]
Neste artigo apresentamos o projeto completo de hardware e software para a automação, controle e telemetria de um reservatório de água tratada.
O link abaixo contém o arquivo compactado contendo o projeto completo de automação e telemetria da estação contendo esquemático, software Ladder e o Manual de Projeto e Utilização.
[file_download style=”1″][download title=”Projeto%20de%20automa%C3%A7%C3%A3o%20do%20reservat%C3%B3rio” icon=”style2-thumb-dl-pdf.png” file=”https://alfacompbrasil.com/wp-content/uploads/2019/09/Projeto-de-automação-do-reservatório.zip” package=”” level=”” new_window=””]Projeto%20completo%20de%20automa%C3%A7%C3%A3o%20e%20telemetria%20de%20um%20reservat%C3%B3rio%20de%20%C3%A1gua%20tratada%20contendo%20esquem%C3%A1tico%2C%20software%20Ladder%20e%20o%20Manual%20de%20Projeto%20e%20Utiliza%C3%A7%C3%A3o.[/download][/file_download]

Descrição geral do funcionamento do reservatório de água tratada

Normalmente, um reservatório tem por finalidade abastecer por gravidade um bairro ou região do município. Cabe à estação elevatória de água a função de manter o reservatório abastecido. Para tanto, a informação do nível do reservatório deve ser transmitida à elevatória para essa, por sua vez, comande o funcionamento dos grupos moto bombas de maneira a manter o reservatório sempre com o nível dentro dos níveis predefinidos de operação.
As unidades remotas de reservatório têm por objetivo ler os sinais de nível e vazão e reportá-los ao CCO. A informação de nível de cada reservatório é repassada à sua respectiva estação elevatória pelo sistema da comunicação via rádio, centralizado no CCO.
Nesse tipo de configuração o reservatório terá dois níveis (set points) pré-definidos pela operação:

  • Nível de liga: O nível de liga é mais baixo que o nível de desliga e é aquele nível, que quando atingido, indica para a lógica de comando da elevatória que o grupo motobomba deve ser ligado.
  • Nível de desliga: O nível de desliga é mais alto que o nível de liga e é aquele nível, que quando atingido, indica para a lógica de comando da elevatória que o grupo motobomba deve ser desligado.

A figura a seguir apresenta a topologia simplificada de uma estação de reservatório.

Painel de telemetria PT5420


Baseado no CLP Haiwell modelo C16SOP, o painel apresenta alto índice de integração, modularidade, facilidade de manutenção e protocolo MODBUS RTU mestre e escravo, resultando em uma montagem de alto desempenho e baixo custo. O quadro está programado para controlar e monitorar:

  • Vazões de saída de água;
  • Nível de reservatório;
  • Invasão;
  • Falta de energia;
  • Painel aberto;

Características técnicas do painel de telemetria

CLP Haiwell C16SOP com 8ED 8SD
Elemento de comunicação Rádio modem RM2060
Alimentação Fonte carregadora com bateria e autonomia de 12 horas
Entradas analógicas 08 entradas analógicas em 4 a 20 mA protegidas contra surtos
Entradas digitais 7 entradas digitais em 24V livres
Saídas digitais 8 saídas digitais, sendo 08 isoladas a réle pelo módulo ID2908
Iluminação Módulo SW3301 com 12 LEDs brancos de alta intensidade
Indicação de porta aberta Sensor de porta aberta conectado ao CLP
Indicação de alimentação Sensor indica alimentação pela rede ou pela bateria
Dimensões Altura 40 x Largura 40 x Profundidade 20 cm
Grau de Proteção IP54 (*consulte outros modelos)
Proteção da alimentação DPS SW3300

Componentes do painel de telemetria

Qtd. Modelo Descrição
1 Haiwell C16SOP CLP com 08 entradas digitais, 08 saídas digitais, porta serial RS232 e RS485
1 Elemento de Comunicação De acordo com modelo escolhido
1 Alfacomp 2061 Fonte de alimentação com bateria
1 Alfacomp – SW3300 Seccionador e protetor com tomada
1 Alfacomp – SW3301 Iluminador de painel com chave fim de curso
1 Alfacomp – IA2820 Interface analógica multiplexada para 8 entradas em 4 a 20mA
1 Alfacomp – ID2908 Isolador a relés para 8 saídas digitais
1 Alfacomp – CN3203 Protetor contra surtos para cabo de RF com conexões N-fêmea (se o elemento de comunicação for rádio)
1 Alfacomp – CB3100 Cabo interno de RF (se o elemento de comunicação for rádio)
1 Cemar – CS-4040-20 Quadro de comando metálico
1 Cemar – BT-7 VD Barra de terra
3 Porta fusível Borne porta fusível
10 Borne Borne Modular 2,5 mm
9 Poste Poste Clip Fix 35-5

Materiais diversos utilizados na instalação da remota de telemetria

Qtd. Descrição
1 Antenas conforme definido no projeto de rádio
2 Conector N macho para cabo RGC 213
1 Cabo externo de RF RGC213
1 Mastro de antena conforme definido no projeto de rádio
1 Materiais diversos de montagem de campo

Esquema elétrico do quadro de automação – Remota de reservatório

Software de controle do reservatório

A programação do CLP que controla e monitora o reservatório é feita em Ladder.
A figura a seguir apresenta os módulos de rotinas que compõe a programação da estação.

Lista de entradas e saídas

Entradas analógicas

Entrada Descrição Escala Faixa de medição Memória
E0 Nível do reservatório 250 a 1250 0 a 10,0 m V40
E1 Vazão instantânea 250 a 1250 0 a 200,0 l/s V41
E2 250 a 1250 V42
E3 250 a 1250 V43
E4 250 a 1250 V44
E5 250 a 1250 V45
E6 250 a 1250 V46
E7 250 a 1250 V47

Entradas digitais

Entrada Descrição Memória
X0 Pulsos do módulo IA2820 X0
X1 Indicação de CA presente X1
X2 Intrusão no painel X2
X3 Invasão na estação X3
X4 Pulso do acumulador de volume X4
X5 X5
X6 X6
X7 X7

Saídas digitais

Saída Descrição Memória
Y0 Alarme sonoro Y0
Y1 Y1
Y2 Y2
Y3 Y3
Y4 Y4
Y5 Sinal SL0 de seleção de canal do módulo IA2820 Y5
Y6 Sinal SL1 de seleção de canal do módulo IA2820 Y6
Y7 Sinal SL2 de seleção de canal do módulo IA2820 Y7

Mapa de memórias do CLP

Memória Descrição Tipo Tag Sub-rotina
Memórias internas não retentivas – M0 a M3
M0 Ativa alarme sonoro BOOL ALR ON PGB:ALARME
M1 Desativa/reseta alarme sonoro BOOL RST ALR REMOTO PGB:ALARME PGB:CMD
M2 Identifica nível baixo BOOL Nível baixo PGB:BITS_STATUS
M3 Identifica nível alto BOOL Nível alto PGB:BITS_STATUS
Memórias internas especiais – SM0 a SM5
SM0 Ligado enquanto CLP em modo RUN BOOL On during Running
SM5 Pulso a cada 1 segundo BOOL 1s clock pulse
Timers – T0 a T3
T0 Debounce de 3s para acionar alarme sonoro TIMER DEBOUNCE ALR PGB:ALARME
T1 Rearma remotamente alarme sonoro após 10min TIMER DEBOUNCE ALR2 PGB:ALARME
T2 Aguarda 5s para alarmar nível baixo TIMER NIVEL BAIXO PGB:BITS_STATUS
T3 Aguarda 5s para alarmar nível alto TIMER NIVEL ALTO PGB:BITS_STATUS
Contadores 16bits – C0
C0 Acumulador de pulsos do totalizador de vazão CTU Pulso Tot1 PGB:TOTALIZADOR
Registradores retentivos – V0 a V104
V0 Nível do reservatório WORD Nivel1 PGB:BITS_STATUS PGB:ESCALA_NIVEL
V1 Vazão instantânea WORD Vazao1 PGB:ESCALA_VAZAO
V2 Cópia do comando enviado pelo CCO WORD Cmd_RX PGB:CMD
V3 Segundos de 0 a 59s WORD Segundeiro PGB:MAIN
V4 Bit de status WORD Status PGB:BITS_STATUS
V5 Acumulador de volume TOT1_L – parte baixa WORD Tot1_L PGB:CMD PGB:TOTALIZADOR
V6 Acumulador de volume TOT1_H – parte alta WORD Tot1_H PGB:CMD PGB:TOTALIZADOR
V38 Contador das saídas digitais para multiplexagem WORD Count Multiplex PGB:IA2820
V39 Contador de pulsos da IA2820 WORD Pulsos IA2820 PGB:IA2820 INT:LE_IA2820
V40 Valor da entrada analógica E0 – 0 a 1250 WORD EA0 PGB:IA2820 PGB:ESCALA_NIVEL
V41 Valor da entrada analógica E1 – 0 a 1250 WORD EA1 PGB:IA2820
PGB:ESCALA_VAZAO
V42 Valor da entrada analógica E2 – 0 a 1250 WORD EA2 PGB:IA2820
V43 Valor da entrada analógica E3 – 0 a 1250 WORD EA3 PGB:IA2820
V44 Valor da entrada analógica E4 – 0 a 1250 WORD EA4 PGB:IA2820
V45 Valor da entrada analógica E5 – 0 a 1250 WORD EA5 PGB:IA2820
V46 Valor da entrada analógica E6 – 0 a 1250 WORD EA6 PGB:IA2820
V47 Valor da entrada analógica E7 – 0 a 1250 WORD EA7 PGB:IA2820
V50 Preset do fundo de escala do sensor de nível WORD Preset nivel1 PGB:ESCALA_NIVEL
V51 Preset do fundo de escala do sensor de vazão WORD Preset vazao1 PGB:ESCALA_VAZAO
V52 Preset da quantidade de pulsos para totalizar 1 metro cúbico WORD Pulsos Tot1 PGB:TOTALIZADOR
V100 Comando enviado pelo CCO WORD Cmd PGB:CMD
V101 Preset de nível máximo de lâmina d’água WORD Nivel Max
V102 Preset de nível baixo para alarme de nível WORD Nivel Baixo PGB:BITS_STATUS
V103 Preset de nível alto para alarme de nível WORD Nivel Alto PGB:BITS_STATUS
V104 Preset de volume máximo em metros cúbicos do reservatório WORD Volume Max

ICOM – Interface de comunicação

O mapeamento de memória utilizado para leitura e escrita do mestre de comunicação Modbus RTU chamamos de ICOM. A tabela abaixo referência quais são os endereços de memória utilizados.

  • Bloco de Memória de Monitoração (V0 a V6)
  • Bloco de Memória de Setpoints (V100 a V104)

Bloco de memória de monitoração (V0 a V6)

Este é o bloco de dados lidos pelo CCO.

Posição Tag Descrição Memória
00 Nivel1 Nível do reservatório V0
01 Vazao1 Vazão instantânea V1
02 Cmd_RX Cópia do comando enviado pelo CCO V2
03 Segundeiro Segundos de 0 a 59s V3
04 Status Bit de status V4
05 Tot1_L Acumulador de volume TOT1_L – parte baixa V5
06 Tot1_H Acumulador de volume TOT1_H – parte alta V6

Descrição da memória de monitoramento – STATUS

A memória Status contém 16 bits que são utilizados como status de funcionamento da estação, cada bit identifica uma ocorrência, sendo 0=false e 1=true.

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
  • Bit 0 =0(bateria), =1(rede CA)
  • Bit 1 =0(porta fechada), =1(porta aberta)
  • Bit 2 =0(invasão sim), =1(invasão não)
  • Bit 3 =0(alarme sonoro desligado), =1(alarme sonoro ligado)
  • Bit 4 =0(nível normal), =1(nível baixo)
  • Bit 5 =0(nível normal), =1(nível alto)

Bloco de memória de setpoints (V100 a V105)

Este é o bloco de parâmetros enviados pelo CCO.

Posição Tag Descrição Memória
00 Cmd Comando enviado pelo CCO V100
01 Nivel Max Preset de nível máximo de lâmina d’água V101
02 Nivel Baixo Preset de nível baixo para alarme de nível V102
03 Nivel Alto Preset de nível alto para alarme de nível V103
04 Volume Max Preset de volume máximo em metros cúbicos do reservatório V104

Descrição da memória de setpoint – Cmd

A memória Cmd é responsável por receber valores do CCO e executar comandos, que estão listados a seguir.

  • 00 = sem comando
  • 01 = zera totalizador de vazão parte alta e parte baixa do registrador (V5 e V6)
  • 02 = cala alarme sonoro

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”4877, 2952, 2143, 2912, 4547, 1991, 3920, 3784, 3663″ text_color=”undefined” hide_author=”” ][/recent_posts]
 

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]
Monte sua remota de telemetria de reservatório com baixo custo e resultados excelentes utilizando as interfaces Modbus IM2020.

Telemetria de reservatório com a interface Modbus IM2020

Veja como monitorar o nível e a vazão do reservatório de forma simples e com baixo custo. Utilizando este kit você economiza e fica proprietário do seu sistema.
O módulo SW3300 tem as funções de seccionamento, proteção contra surtos e tomada. A fonte de alimentação S-25-24 fornece 24 VCC para a interface Modbus e para o rádio modem. A interface Modbus IM2020 possui duas entradas analógicas e duas entradas digitais onde podemos conectar o transmissor de nível, o transmissor de vazão e ainda um detector de invasão. A interface Modbus se comunica com a central de telemetria por intermédio do rádio modem RM2060.
Remota Modbus para reservatório

Composição da remota

A remota é composta pelos seguinte módulos:

  • SW3300 – DPS, seccionador e tomada;
  • S-25-24 – Fonte de alimentação de 25 W e 24 VCC;
  • IM2020 – Interface Modbus com 2 entradas analógicas e 2 entradas digitais;
  • RM2060 – Rádio modem 900 MHz 1 W
Preço do conjunto de módulos: R$ 2.740,00 (preço válido em Outubro de 2019).

A figura a seguir ilustra o espaço ocupado pelos módulos que compõem a solução.

Materiais acessórios

  • CF914 – Antena Yagi 900 MHz 14 dBi;
  • CN3203 – Centelhador de RF;
  • Cabo interno de RF RG58 com conectores;
  • Cabo externo RGC213 com conectores.

Interface Modbus IM2020

A interface IM2020 funciona como uma remota de I/O distribuído dotada de 2 entradas analógicas e duas entradas digitais com as seguintes características principais:

  • Protocolo de comunicação: Modbus RTU;
  • Seleção de endereço por DIP switch;
  • Alimentação: 10 a 30 VCC;
  • Consumo máximo de 200 mA.

Interface Modbus IM2020

Rádio Modem RM2060

O transceptor RM2060 permite a comunicação wireless utilizando tecnologia Spread Spectrum na faixa dos 900 MHz podendo substituir milhares de metros de cabos de comunicação em ambientes industriais ruidosos. Utilizando comprovada tecnologia FHSS, que dispensa licença de operação junto a Anatel, o transceptor RM2060 estabelece comunicação entre computadores, CLPs e instrumentos diversos que possuem porta serial em padrão RS232 ou RS485 com taxas de 1200 a 115.200 bps.  Alcance de até 32 km com visada.

SW3300 – DPS, seccionador e tomada


O módulo SW3300 foi projetado para compor painéis elétricos de comando e automação e integra as seguintes funções:

  • Seccionamento
  • Proteção contra sobre corrente por meio de fusíveis
  • Proteção contra sobre tensões por meio de varistores
  • Tomada bipolar com terra padrão ABNT
  • Sinalização luminosa de energização

Por incluir diversas funções em um módulo único, o dispositivo simplifica a montagem do quadro e contribui para layouts mais compactos.

Solicite informações adicionais ou uma cotação

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”4877, 2952, 2143, 2912, 4547, 1991, 3920, 3784, 3663″ text_color=”undefined” hide_author=”” ][/recent_posts]
 

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

Este e-book foi feito para você que deseja saber tudo sobre como criar o sistema de telemetria de água e esgoto para a sua cidade.  O e-book contém um projeto completo para você desenvolver e implantar um sistema de automação, controle e tele supervisão de reservatórios, elevatórias e estações de tratamento de água e esgoto.
[button_2 align=”center” href=”https://contato.site/c99271594b/maquina-inicial/e-book-telemetria-do-saneamento”%5DBaixe o e-book clicando aqui[/button_2]
Baixe o e-book clicando aqui.
Juntamente com os conteúdos, são fornecidos, absolutamente sem custo, links para download de:
[bullet_block style=”size-16″ small_icon=”1.png” width=”” alignment=”center”]

  • Projetos elétricos completos dos painéis elétricos
  • Softwares Ladder para automação das estações
  • Um template de software customizável SCADA com telas para até 10 reservatórios e 10 elevatórias de água
  • Software gratuito Haiwell Cloud SCADA
  • Software gratuito HaiwellHappy para a programação dos CLPs

[/bullet_block]

Funcionamento geral do abastecimento de água

Apresentamos a topologia básica dos sistemas municipais de água com suas estações de captação de água bruta, estações de tratamento, estações elevatórias, reservatórios, boosters e demais pontos de controle e monitoração.
Baixe o e-book clicando aqui.

Lógica de funcionamento de reservatórios e elevatórias de água tratada

A forma mais usual para garantir o abastecimento de água em um bairro ou região de um município consiste em construir reservatórios em pontos elevados da área atendida, ou construir reservatório elevados quando a região é plana. A água é conduzida aos pontos de consumo por gravidade e o sistema de abastecimento municipal tem como missão, manter os reservatórios abastecidos.
Baixe o e-book clicando aqui.

CCO – Centro de Controle e Operação da telemetria de água e esgoto

Dotado de computadores e monitores, o CCO permite que a equipe de operação supervisione e controle o funcionamento de todo o sistema de abastecimento de água do município. Do centro de operações é possível comandar de forma automática e manual o funcionamento de elevatórias, reservatórios, boosters, válvulas, comportas, macro medidores de vazão e qualquer outro dispositivo eletromecânico de interesse na distribuição de água. Toda a comunicação se dá via rádio.
Baixe o e-book clicando aqui.

Telemetria via rádio da distribuição de água tratada

Para que o CCO – Centro de Controle e Operação – possa se comunicar com as estações remotas, é necessário um sistema de comunicação. O meio de melhor custo-benefício para implementar essa comunicação é o que chamamos de telemetria via rádio, e o rádio mais utilizado para esse serviço é o rádio modem spread spectrum na faixa dos 900 MHz. O e-book ensina como dimensionar e instalar o sistema de rádio para a telemetria da distribuição de água do município.
Baixe o e-book clicando aqui.

Remotas de telemetria utilizadas no saneamento

Remotas de telemetria são, por definição, dispositivos microprocessados que permitem monitorar e controlar objetos físicos a distância, conectando sensores e atuadores a um sistema SCADA de tele supervisão e controle. Outros nomes para remota de telemetria são:

  • UTR – Unidade Terminal Remota;
  • URT – Unidade Remota de Telemetria;
  • RTU – Remote Telemetry Unit ou Remote Telecontrol Unit.
Baixe o e-book clicando aqui.

Transmissores e sensores utilizados na telemetria do saneamento

Sensores são dispositivos capazes de transformar grandezas físicas em grandezas elétricas, também são chamados de transdutores porque traduzem uma grandeza de uma natureza em outra, no caso em grandeza elétrica. Outro nome frequentemente utilizado em instrumentação é o transmissor. É comum nos referirmos aos medidores de pressão, por exemplo, como transmissores de pressão, até porque o valor da pressão medida é transmitida por cabos elétricos à distância.

Baixe o e-book clicando aqui.
 

SCADA – Software de supervisão, controle e aquisição de dados

O e-book apresenta um template de software supervisório genérico para um sistema de automação e telemetria de 10 reservatórios e 10 elevatórias de água tratada. O template completo e gratuito está disponível para download.
Baixe o e-book clicando aqui.

Projeto de automação e telemetria de uma elevatória de água

O e-book apresenta o projeto completo de hardware e software para a automação, controle e telemetria de uma estação elevatória de água tratada contendo esquemático, software Ladder e o Manual de Projeto e Utilização.
Baixe o e-book clicando aqui.

Projeto de automação e telemetria de um reservatório de água tratada

O e-book apresenta o projeto completo de hardware e software para a automação, controle e telemetria de um reservatório de água tratada contendo esquemático, software Ladder e o Manual de Projeto e Utilização.
Baixe o e-book clicando aqui.
 
[button_2 align=”center” href=”https://contato.site/c99271594b/maquina-inicial/e-book-telemetria-do-saneamento”%5DBaixe o e-book completo e gratuito clicando aqui[/button_2]

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”4877, 2952, 2143, 2912, 4547, 1991, 3920, 3784, 3663″ text_color=”undefined” hide_author=”” ][/recent_posts]

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

Solução Elipse E3 monitora, em tempo real, um total de 20 Estações de Armazenagem de Água e 60 motobombas controladas pelo SAEMAS em Sertãozinho (SP)

FONTE: https://www.elipse.com.br/case/elipse-e3-permite-ao-saemas-diagnosticar-e-solucionar-problemas-em-fracao-de-segundos/

Necessidade

O SAEMAS (Serviço Autônomo de Água, Esgoto e Meio Ambiente de Sertãozinho) é uma autarquia municipal responsável por executar e explorar os serviços de água e esgoto em Sertãozinho, interior de São Paulo. Para automatizar o sistema de abastecimento de água em Sertãozinho, o SAEMAS decidiu utilizar o Elipse E3.

A grande facilidade com que permite realizar ajustes, melhorias e expansões foi o fator determinante para a escolha da solução desenvolvida pela Alfacomp utilizando o Elipse E3.

SAEMAS
Figura 1. Tela inicial da aplicação do E3 no SAEMAS

Solução

O E3 permite monitorar e executar comandos sobre as 20 unidades do sistema de abastecimento de água de Sertãozinho, cada uma delas composta de um reservatório e três motobombas. Para isto, disponibiliza uma tela destinada a cada unidade, na qual é possível supervisionar as vazões, pressões, tensões e correntes assinaladas junto às motobombas, assim como os níveis de água nos reservatórios.


Figura 2. Controle de uma das unidades que compõem a rede de abastecimento de Sertãozinho

Na mesma tela, o E3 permite também acompanhar a condição de operação das motobombas, informando, por exemplo, se há algum equipamento com defeito ou sob manutenção ou se a unidade já se encontra em operação naquele instante. Além disso, o software permite acompanhar ou resetar o período, em horas, de funcionamento das motobombas.

Ainda relacionado às motobombas, o E3 permite visualizar e ajustar as configurações padrões definidas para as suas tensões e correntes. As configurações padrões determinadas para as pressões com que as motobombas bombeiam a água em cada unidade também podem ser monitoradas e ajustadas pelo software.


Figura 3. Controle das configurações de tensão e corrente na motobomba entre o poço e o reservatório da unidade

O mesmo controle vale para as configurações dos níveis de água nos reservatórios, as quais podem ser ajustadas de forma que o sistema ligue ou desligue as motobombas conforme seja necessário, contribuindo assim para garantir o abastecimento e redução de desperdícios. Neste contexto voltado ao uso mais racional de água e energia, o E3 também permite selecionar quais estações entrarão em funcionamento nos horários de ponta conforme a demanda.


Figura 4. Tela que permite escolher quais estações serão acionadas nos horários de ponta

O E3 exibe ainda os níveis e volumes de água verificados no total e junto a cada reservatório, permitindo acessar as configurações padrões ajustáveis da altura da água em cada reservatório. As vazões mensuradas nas motobombas localizadas entre os poços e reservatórios, tanto a total quanto a calculada por hora, também são monitoradas, assim como o tempo de varredura do sistema de automação em cada unidade.


Figura 5. Controle do nível de água presente nos reservatórios

Por fim, a solução da Elipse permite emitir relatórios dos eventos, históricos e alarmes assinalados no período estipulado pelo usuário. Em relação aos alarmes, caso algum valor definido na configuração padrão não esteja sendo respeitado, por exemplo, haja uma subtensão muito abaixo da indicada, o E3 alerta os operadores via um sinal visual e sonoro.

Além dos relatórios, o software permite, que esta mesma análise de desempenho das unidades, seja realizada sob a forma de gráficos. Vale salientar que, tanto os relatórios quanto os gráficos podem ser exportados para PDF ou Excel, sendo instrumentos de extrema utilidade junto às auditorias de fiscalização.


Figura 6. Gráfico de análise das variáveis elétricas das motobombas de uma unidade

Benefícios

O Elipse E3 permite ao SAEMAS monitorar, em tempo real, as 20 unidades do sistema de abastecimento de água em Sertãozinho. Com isto, o operador é informado caso haja qualquer ocorrência via os alarmes, podendo agir com mais agilidade para solucioná-la. Uma manobra que, hoje, é feita em fração de segundos, antes, levava horas, uma vez que o monitoramento não era remoto, mas sim realizado de forma local.

“Os relatórios e informações geradas pelo E3 nos permitem diagnosticar e solucionar problemas com mais agilidade, dispensando o envio das rondas até cada unidade simplesmente para monitoramento”, disse Leandro Espinoza, Químico do SAEMAS.

Segundo Espinoza, este controle lhes possibilitou também verificar a necessidade de se elevar o fator de potência das motobombas. Um benefício que vai direto ao encontro do objetivo central desta automação, ou seja, reduzir os desperdícios com água e, neste caso em particular, energia.

“Graças ao E3, conseguimos verificar a necessidade de corrigirmos o fator de potência das motobombas e, a partir desta observação, podermos tomar, futuramente, as medidas mais indicadas para executar esta correção que, acreditamos, representará uma economia de energia na ordem de R$ 20 mil por mês”, revelou.

Confira abaixo outros benefícios proporcionados pelo software da Elipse ao SAEMAS:

  • Monitoramento, em tempo real, das variáveis de pressão, vazão e nível da água nos reservatórios;
  • Possibilidade de monitorar e ajustar as configurações padrões das tensões, correntes, pressões e níveis de água nos reservatórios;
  • Sistema de alarmes que alerta os operadores caso haja qualquer espécie de problema nas unidades;
  • Possibilidade de acompanhar ou resetar o tempo de funcionamento das motobombas;
  • Monitoramento da condição de operação das motobombas;
  • Emissão de relatórios dos eventos, históricos e alarmes, que podem ser exportados para Excel e PDF;
  • Emissão de gráficos de análise de desempenho das unidades, que, assim como os relatórios, também podem ser exportados para Excel e PDF.

Ficha Técnica

  • Cliente: SAEMAS
  • Integrador: Alfacomp Automação Industrial Ltda.
  • Pacote Elipse: Elipse E3
  • Plataforma: Windows Server 2012
  • Número de cópias: 4 (1 E3 Server + 3 E3 Viewer Control)
  • Pontos de I/O: 1500
  • Drivers de comunicação: MODBUS RTU

Solicite informações adicionais ou uma cotação

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”7177, 5887, 5568, 5465, 5032, 4877, 2952, 4326″ text_color=”undefined” hide_author=”” ][/recent_posts]

Por que a telemetria de água e esgoto é importante? Se você reside em um dos 5.570 municípios brasileiros este assunto é importante para você. Quando em uma cidade a população é quem avisa a empresa de águas do município sobre a falta de água, isso provavelmente se dá pelo fato de o município não possuir um sistema de telemetria de água e esgoto.

E o que é a Telemetria de Água e Esgoto?

Trata-se de um sistema eletrônico de automação, monitoração e controle dos reservatórios e estações elevatórias de água e esgoto, ETAs (Estações de Tratamento de Água), ETEs (Estações de Tratamento de Esgoto) e demais pontos de interesse como Boosters (Estações de Pressurização), VRPs (Válvulas Reguladoras de Pressão) e pontos de medição de pressão e vazão da rede de distribuição de água tratada. Todo o controle se dá no CCO (Centro de Controle e Operação).
Telemetria de Água e Esgoto

Como funciona o CCO (Centro de Controle e Operação)?

Telemetria no SAAE de Indaiatuba

Foto: Giuliano Miranda – DCS/SAAE.

Dotado de computadores e monitores, o CCO permite que a equipe de operação supervisione e controle o funcionamento de todo o sistema de abastecimento de água do município. Do centro de operações é possível comandar de forma automática e manual o funcionamento de elevatórias, reservatórios, boosters, válvulas, comportas, macro medidores de vazão e qualquer outro dispositivo eletromecânico. Toda a comunicação se dá via rádio.

10 motivos para implantar a Telemetria de Água e Esgoto em sua cidade

Motivo 1 – Garantir o abastecimento

Falta d'água
Em uma cidade que não possui o sistema de telemetria de água e esgoto, é a população que avisa a companhia de saneamento quando falta água em um bairro. A população percebe que faltou água quando a caixa d’água da casa esgota o conteúdo. Contudo, muito antes disso o reservatório do bairro secou porque a estação elevatória parou de bombear ou a adutora rompeu. Se existisse um sistema de telemetria no município, o problema na elevatória ou na adutora seriam alarmados imediatamente, dando tempo para a equipe de manutenção restabelecer o abastecimento antes mesmo que a população perceba a falta d’água.

Motivo 2 – Antecipar situações de falha

Manutenção preventivaO sistema de telemetria pode detectar problemas em motores, como vibração excessiva, sobre-temperatura e consumo anormal de energia. O sistema pode também perceber vazamentos que antecedem rupturas de adutoras pela diferença de vazões e por quedas em pressão, ou mesmo pela curva de enchimento e esvaziamento de reservatórios. Estas são algumas das formas de detectar problemas e antecipar a manutenção, minimizando custos e evitando situações de desabastecimento.

Motivo 3 – Minimizar perdas

HidrômetroMuitas cidades brasileiras apresentam perdas que vão de 20% a mais de 50%. Digamos que em uma cidade a perda seja de 50%, isto significa que para cada dois litros de água tratados apenas um é recebido pela população e faturado pela empresa de saneamento. As perdas podem ser reais ou aparentes. Perda real é aquela devida a vazamentos. Perda aparente é aquela devida a medições errôneas ou furto de água. A setorização da distribuição e utilização de macro medidores de vazão auxilia na busca das perdas. O valor macro medido é comparado com a medição dos hidrômetros e o trabalho de “caça” às perdas é priorizado nos bairros onde a perda é maior. Os macro medidores de vazão podem e devem fazer parte do sistema de telemetria.

Motivos 4 – Detectar rupturas de adutoras

Ruptura de adutoraPela medição de pressão da rede é possível perceber quando um vazamento de adutora acontece. No monitor do CCO (Centro de Controle e Operação) a queda da pressão é imediatamente alarmada e os valores da pressão são registrados em gráficos históricos para posterior investigação das causas da ruptura.
 

Motivo 5 – Equilibrar a distribuição de água

Reservatórios
Não são poucos os municípios que sofrem do problema de abastecimento por baixa produção de água tratada. Isso acontece quando os mananciais estão acusando baixos níveis ou quando acontecem chuvas que aumentam as partículas em suspensão e dificultam o tratamento nas ETAs (Estações de Tratamento de Água). Quando o consumo é maior que a produção é necessário equilibrar a distribuição, desviando água de bairros mais abastecidos para regiões mais desabastecidas. Isso é feito monitorando níveis de reservatório e pressões de rede, e desligando elevatórias que abastecem reservatório que estão mais abastecidos de forma a sobrar mais água para os mais críticos.

Motivo 6 – Minimizar custos com energia elétrica

Horo sazonalO sistema de telemetria permite controlar as elevatórias de água e esgoto de forma a minimizar ou interromper o funcionamento das mesmas durante o horário de ponta. Com isso pode-se contratar regimes de fornecimento de energia com bandeiras tarifárias econômicas resultando em minimização do custo com energia elétrica. Outro fator que contribui para a diminuição do custo da energia elétrica é a diminuição das perdas reais. Quando as perdas são minimizadas, a produção de água pode ser diminuída, e menos água é bombeada, resultando em menor consumo elétrico.

Motivo 7 – Minimizar custos com pessoas

Não é incomum, ainda hoje, encontrarmos municípios em que o nível dos reservatórios é mantido por funcionários residentes ou em regime de turnos nas estações elevatórias e reservatórios. Existem também as situações em que o nível dos reservatórios é mantido por um funcionário que visita cada um para medir o nível, e liga ou desliga a elevatória correspondente. Em cidades que possuem sistemas de telemetria de água e esgoto, pode-se minimizar o número de pessoas envolvidas na operação da distribuição de água pois todo o controle se dá no CCO (Centro de Controle e Operação) com uma equipe reduzida.

Motivo 8 – Minimizar custos com insumos químicos

Produtos químicos para tratamento de águaNo momento em que as perdas são minimizadas, menos água é produzida para um mesmo consumo do município. Menor produção de água resulta em menor consumo de produtos químicos.
 

Motivo 9 – Detectar invasões e roubo

RouboA instalação de painéis de telemetria em cada elevatória e cada reservatório permite acoplar detectores de presença e switches em portas e janelas das instalações. Com este tipo de recurso a tentativa de invasão é imediatamente detectada e providências podem ser tomadas para impedir o sucesso dos ladrões.

Motivo 10 – Detectar falta de energia

Falta de energiaMuito antes das empresas de energia tomarem conhecimento pela população sobre um problema de interrupção no fornecimento, o sistema de telemetria detecta a situação pois os painéis de telemetria normalmente são dotados de sistemas ininterruptos de energia (no-break) que sustenta o funcionamento do painel por alguma horas. Durante a falta de energia a unidade remota continua monitorando parâmetros hidráulicos e elétricos e transmitindo as leitura para o CCO. A falta de energia é reportada à concessionária de distribuição de energia elétrica para que providências sejam tomadas no sentido do restabelecimento do fornecimento.

Conclusão

O Sistema de Telemetria de Água e Esgoto monitora em tempo real o funcionamento de estações elevatórias, reservatórios, medidores de vazão e demais dispositivos elétricos e hidráulicos do sistema, armazena e apresenta dados históricos sobre a qualidade do abastecimento, alarma vazamentos, falhas de operação, falhas de equipamentos, intrusões, valores anormais de níveis, pressões e vazões, previne e minimiza perdas. Enfim, garante a qualidade dos serviços prestados pela empresa de saneamento do município. Os primeiros sistemas de telemetria foram implantados há mais de 20 anos. Nos municípios onde o sistema existe, a sua necessidade passa a ser percebida como imprescindível. Por outro lado, ainda são muitas a cidades desprovidas desta tecnologia. Isso se deve principalmente à falta de conhecimento sobre os benefícios do sistema.

Conheça a telemetria implantada em São Leopoldo – RS

[video_player type=”youtube” style=”1″ dimensions=”560×315″ width=”560″ height=”315″ align=”center” margin_top=”0″ margin_bottom=”20″ ipad_color=”black”]aHR0cHM6Ly95b3V0dS5iZS9ReUNUUDNreXlISQ==[/video_player]

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”most_recent_posts” posts_num=”10″ selectable_posts=”” text_color=”undefined” hide_author=”” ][/recent_posts]
 
 
[button_1 text=”Saiba%20mais%20sobre%20a%20Alfacomp” text_size=”32″ text_color=”#000000″ text_bold=”Y” text_letter_spacing=”0″ subtext_panel=”N” text_shadow_panel=”Y” text_shadow_vertical=”1″ text_shadow_horizontal=”0″ text_shadow_color=”#ffff00″ text_shadow_blur=”0″ styling_width=”40″ styling_height=”30″ styling_border_color=”#000000″ styling_border_size=”1″ styling_border_radius=”6″ styling_border_opacity=”100″ styling_shine=”Y” styling_gradient_start_color=”#ffff00″ styling_gradient_end_color=”#ffa035″ drop_shadow_panel=”Y” drop_shadow_vertical=”1″ drop_shadow_horizontal=”0″ drop_shadow_blur=”1″ drop_shadow_spread=”0″ drop_shadow_color=”#000000″ drop_shadow_opacity=”50″ inset_shadow_panel=”Y” inset_shadow_vertical=”0″ inset_shadow_horizontal=”0″ inset_shadow_blur=”0″ inset_shadow_spread=”1″ inset_shadow_color=”#ffff00″ inset_shadow_opacity=”50″ align=”center” href=”http://materiais.alfacomp.ind.br/bem-vindo”/%5D

Uma abordagem prática voltada para sistemas de automação, telemetria e SCADA

Cálculo de rádio enlace

O cálculo de rádio enlace avalia a viabilidade de comunicação entre dois pontos. Se você já teve que interligar equipamentos seriais que comunicam via RS232 ou RS485 em distâncias ou situações em que cabos seriais eram inviáveis, este artigo é para você. Utilizar rádio modem para comunicar equipamentos que se comunicam serialmente é mais fácil do que parece. Veja como calcular o enlace de rádio.

Componentes básicos de um rádio enlace

Cálculo de rádio enlace
Podemos definir como rádio enlace o conjunto de equipamentos necessários para estabelecer comunicação por rádio entre dois pontos. Os elementos básicos para a implementação de um rádio enlace são:

  • Rádio transmissor;
  • Linha de transmissão da estação transmissora;
  • Antena transmissora;
  • Meio de propagação;
  • Antena receptora;
  • Linha de transmissão da estação receptora;
  • Rádio receptor;

Comportamento da energia ao logo do percurso

Cálculo de rádio enlace

Desde a saída do transmissor até a chegada no receptor, o sinal sofre atenuações e ganhos. O gráfico ao lado representa a variação da intensidade do sinal ao longo do percurso. A intensidade do sinal sofre as seguintes alterações:

  • Perda no cabo do transmissor;
  • Ganho na antena transmissora;
  • Perda no espaço livre;
  • Ganho na antena receptora;
  • Perda no cabo do receptor.

As intensidades, perdas e ganhos são representados em decibel (dB).

A escala logarítmica

O dB é uma escala utilizada para representar a relação entre duas potências. São as seguintes as unidades de referência usuais nos sistemas de rádio:

  • dBW – relação entre uma dada potência e a unidade de 1W;
  • dBm – relação entre uma dada potência e a unidade de 1mW;
  • dBi – relação entre o ganho de uma antena e o ganho do irradiador isotrópico (antena teórica com diagrama de irradiação esférico).

O cálculo da relação entre duas potências é dado pela fórmula abaixo.

Exemplo: Seja uma potência de 0,001 mW, sua intensidade dada em dBm é calculada como:
10 log (0,001 mW / 1 mW) = – 30 dBm

Cálculo de Rádio Enlace

Dizemos que um enlace é viável se a intensidade calculada do sinal recebido é maior do que o nível de sensibilidade do receptor, guardada a margem de segurança. O cálculo da intensidade de sinal recebido é dado pela fórmula abaixo:


Onde:

  • Tx – Potência de saída do rádio transmissor (dBm);
  • Pt – Perda por atenuação no cabo da antena transmissora (dB);
  • Gt – Ganho na antena transmissora (dBi);
  • Ao – Atenuação no espaço livre (dB);
  • Gr – Ganho da antena receptora (dBi);
  • Pr – Perda por atenuação no cabo da antena receptora (dB);
  • RX – Sinal recebido (dBm).

Atenuação no Espaço Livre

Cálculo de rádio enlace
Uma onda eletromagnética propagando-se no espaço sofre uma atenuação contínua. A intensidade é inversamente proporcional ao quadrado da distância, ou seja, quando a distância dobra, o sinal diminui para um quarto do valor. A atenuação no espaço livre pode ser calculada pela fórmula abaixo.

Onde:

  • D = distância em metros;
  • λ = Comprimento de onda (m) = 300 / freqüência (MHz);
  • Ao = Atenuação do espaço livre (dB).

Ou, utilizando a freqüência (f) em MHz:

Cálculo da Potência Efetivamente Irradiada (ERP)

A Potência Efetivamente Irradiada (ERP) por uma estação transmissora pode ser calculada pela fórmula abaixo.

O valor da ERP é importante na análise para enquadramento das estações às normas da Anatel.

Perda por Obstrução da Primeira Zona de Fresnel

A energia transportada de uma antena transmissora até uma antena receptora é contida em elipsóides concêntricos chamados zonas de Fresnel. Dizemos que não existe perda por obstrução quando não há obstáculos dentro da primeira zona. Essa avaliação é feita levantando-se o perfil do terreno entre as duas estações com a ajuda de mapas cartográficos e calculando-se o raio da zona ao longo do percurso.
O cálculo do raio de Fresnel é apresentado abaixo.
Cálculo de rádio enlace
Perdas ocasionadas por obstruções conhecidas como  gume de faca são calculadas com base no percentual de liberação da primeira zona de Fresnel e seguem a fórmula abaixo.
Cálculo de rádio enlace
Onde v é o índice de liberação do raio de Fresnel dado por:
Cálculo de rádio enlace

Cálculo de rádio enlace

Ondas Eletromagnéticas

Cálculo de rádio enlace

A energia enviada pelas antenas transmissoras e captada pelas antenas receptoras é transportada por ondas eletromagnéticas. Seu nome origina-se do fato de que são compostas por campos elétricos e magnéticos variáveis e se propagam no vácuo à velocidade de 300.000 quilômetros por segundo.

A maneira como os campos elétrico e magnético se orientam no espaço é chamada polarização. Se o campo elétrico é paralelo à superfície da Terra, dizemos que a polarização é horizontal; se o campo elétrico está em plano perpendicular à superfície da Terra, a polarização é vertical.

Cálculo de rádio enlace

Podemos orientar antenas verticalmente ou horizontalmente.

Conceito: OEM é uma perturbação física composta por um campo elétrico (E) e um campo magnético (H) variáveis no tempo, perpendiculares entre si, capazes de se propagar no espaço.

Frequência: número de oscilações por unidade de tempo (Hz).

Comprimento de onda: distância percorrida pela onda durante um ciclo. É definido pela velocidade de propagação dividida pela freqüência. Ver fórmula ao lado.

Antenas

Antenas são dispositivos capazes de transmitir e captar ondas eletromagnéticas nas faixas de radiofrequência. São compostas de componentes metálicos nas mais variadas configurações. Os comprimentos e a disposição dos elementos irão depender das frequências em que se deseja operar. Alguns tipos de antenas são listados abaixo.

  • Yagi;
  • Painel Setorial;
  • Omnidirecional;
  • Antenas Patch;
  • Log – Periódica;

As antenas de interesse principal em telemetria são a Yagi e a omnidirecional.

Antena Yagi – Uda

Normalmente conhecida apenas por antena Yagi, foi concebida em 1926 por Shintaro Uda da Universidade Tohoku do Japão com a colaboração de Hidetsugu Yagi, que teve seu nome associado à antena quando publicou o primeiro artigo em inglês descrevendo a mesma. Conceitualmente, a antena Yagi é composta por um Refletor, um dipolo simples ou dobrado e um ou mais diretores. A antena da figura é apresentada na posição de polarização vertical que é normalmente utilizada em telemetria e apresenta ganhos que vão de 3 até mais de 20 dBi.
Cálculo de rádio enlace
 
 
 
 
 

Antena Omnidirecional

Normalmente construídas com a concepção colinear, essas antenas, como sugere o nome, irradiam com a mesma intensidade em todas as direções do plano horizontal. Sua polarização é naturalmente vertical e apresenta ganhos na faixa de 2 a 10 dBi.Cálculo de rádio enlace

 
 
 
 
 
 
 
 

Polarização de Antenas

A figura a seguir apresenta a irradiação resultante de um dipolo simples polarizado verticalmente. Em polarização vertical, o plano elétrico é perpendicular à superfície da Terra, enquanto o plano magnético é paralelo à superfície da Terra.

Cálculo de rádio enlace

Diagrama de Irradiação

O diagrama de irradiação é a representação gráfica da forma como a energia eletromagnética se distribui no espaço.

Cálculo de rádio enlace

O diagrama pode ser obtido tanto pelo deslocamento de uma antena de prova em torno da antena que se está medindo, como pela rotação dessa em torno do seu eixo, enviando os sinais recebidos a um receptor capaz de discriminar com precisão a freqüência e a potência recebidas.

Os resultados obtidos são geralmente normalizados. Ao máximo sinal recebido é dado o valor de 0 dB, facilitando a interpretação dos lóbulos secundários e a relação frente-costas.

A curva em azul representa a energia irradiada em cada direção em torno da antena.

Ângulo de Meia Potência

Cálculo de rádio enlace

Os ângulos de meia potência são definidos pelos pontos no diagrama onde a potência irradiada equivale à metade da irradiada na direção principal. Esses ângulos definem a abertura da antena no plano horizontal e no plano vertical.

OBS: -3 dB = 50% Potência

No exemplo ao lado temos: Ângulo de –3dB = 55°

 

Diretividade

É a relação entre o campo irradiado pela antena na direção de máxima irradiação e o campo que seria gerado por uma antena isotrópica que recebesse a mesma potência. A diretividade de uma antena define sua capacidade de concentrar a energia irradiada numa determinada direção.
          Cálculo de rádio enlaceE máx = Energia da antena em estudo.
          E isso = Energia da antena isotrópica.
 

Ganho

O ganho pode ser entendido como o resultado da diretividade menos as perdas. Matematicamente, é o resultado do produto da eficiência pela diretividade.
Cálculo de rádio enlaceG = Ganho
D = Diretividade
η = Eficiência
A eficiência de uma antena diz respeito ao seu projeto eletromagnético como um todo, ou seja, são todas as perdas envolvidas (descasamento de impedância, perdas em dielétricos, lóbulos secundários…). Normalmente, está na faixa de 90% a 95%.

Cabos

Linha de transmissão é uma linha com dois ou mais condutores isolados por um dielétrico que tem por finalidade fazer com que uma OEM se propague de modo guiado. Essa propagação deve ocorrer com a menor perda possível. As linhas de transmissão podem ser construídas de diversas maneiras: cabos paralelos, pares trançados, microstrip, cabos coaxiais, guias de onda, etc.
Os cabos coaxiais são as linhas de transmissão mais utilizadas em aplicações de telemetria.
Cálculo de rádio enlace
 
 
 
 
 
 
 
 
 
 
 
 
 

Conectores e Protetores Contra Surto

A tabela a seguir apresenta alguns dos conectores mais utilizados nas aplicações de Telemetria.
Cálculo de rádio enlace
 
 
 
 
 
 
 
 
 
 
 
 

Exemplo de rádio modem utilizado em telemetria, automação e SCADA

Rádio modem RM2060O transceptor RM2060 consiste em uma solução de alto desempenho e baixo custo para comunicação wireless utilizando tecnologia Spread Spectrum na faixa dos 900 MHz podendo substituir milhares de metros de cabos de comunicação em ambientes industriais ruidosos. Utilizando comprovada tecnologia FHSS, que dispensa licença de operação junto a Anatel, o transceptor RM2060 estabelece comunicação entre computadores, CLPs e instrumentos diversos que possuem porta serial em padrão RS232 ou RS485 com taxas de 1200 a 115.200 bps. Para aumentar a segurança e integridade das comunicações, os transceptores RM2060 permitem a encriptação dos dados.

 
 
 

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”2143, 2069, 1910, 1637, 1159, 1156, 1148, 1086, 1032″ text_color=”undefined” hide_author=”” ][/recent_posts]

Modbus é um protocolo de comunicação serial desenvolvido e publicado pela empresa Modicon (hoje uma empresa do grupo Schneider Electric) em 1979 pra uso em seus CLPs (Controladores Lógicos Programáveis). O protocolo Modbus se transformou no protocolo mais difundido para comunicação entres dispositivos de controle e automação industrial. Os motivos principais para o uso do Modbus em ambiente industrial são:

  • Foi desenvolvido especialmente para aplicações industriais;
  • Domínio público e sem cobrança de direitos autorais;
  • Fácil de utilizar e manter;
  • Comunicação de bits e words entre dispositivos de diferentes fabricantes sem restrições.

O Modbus permite a comunicação entre diversos dispositivos conectados a mesma rede, por exemplo, um sistema que mede temperatura e umidade e envia os dados lidos a um computador. O Modbus é frequentemente utilizado para interligar um computador rodando um software supervisório SCADA com as unidades remotas (RTU). No Modbus, muitos dos dados comunicados recebem o nome de dispositivos usuais nas linguagens Ladder de programação de CLPs, por exemplo, uma saída física binária é chamada coil (bobina), e uma entrada física é chamada contact (contato).

A manutenção do protocolo Modbus é feita pela entidade Modbus Organization desde abril de 2004, quando a Schneider Electric transferiu os direitos para essa organização. A Modbus Organization é uma associação de usuários e fabricantes de dispositivos compatíveis com o protocolo Modbus que defendem a continuidade da utilização do protocolo.

A tabela a seguir apresenta as variáveis fornecidas por um dispositivo escravo para um dispositivo mestre.

Principais versões do protocolo Modbus

Modbus RTU

O Modbus RTU é utilizado em comunicação serial e utiliza uma versão binária compacta dos dados. Os bytes de comando e dados são seguidos por um código de checagem cíclica redundante (CRC) para garantir a confiabilidade dos dados. O Modbus RTU é a implementação mais utilizada do protocolo Modbus. Os frames de comunicação são transmitidos de forma contínua sem espaços de tempo entre os bytes.

Modbus ASCII

Esta versão do protocolo utiliza caracteres ASCII na comunicação. O Modbus ASCII utiliza o Longitudinal Redundancy Checksum. Os frames de comunicação iniciam por “:” e terminam por “CR/LF”.

Modbus TCP/IP ou Modbus TCP 

Esta versão do Modbus é utilizada para comunicação utilizando redes TCP/IP, conectando pela porta 502. O Modbus TCP não requer um cálculo de checksum, isso porque o TCP/IP já garante a integridade dos dados.

Comunicação e dispositivos

Cada dispositivo da rede Modbus recebe um endereço único. Em redes seriais apenas os dispositivos mestre podem iniciar uma comunicação (comando). Em redes Ethernet, qualquer dispositivo pode enviar um comando Modbus, contudo, normalmente, apenas um dispositivo será mestre e enviará comandos. Os comandos Modbus contém em seu frame o endereço do dispositivo alvo da comunicação (entre 1 e 247). Apenas o dispositivo endereçado irá aceitar e processar o comando. Existe, contudo, o endereço zero (0) utilizado para o mestre comunicar com todos os dispositivos, comandos broadcast, sendo que esses comandos não são respondidos com uma mensagem de acknoledgement. Todos os comandos Modbus contém a informação de checksum para permitir aos dispositivos detectar falhas na comunicação. Os comandos básicos Modbus podem instruir um dispositivo a alterar o valor em um registro, controlar ou ler uma porta de I/O, e solicitar que um dispositivo envie um ou mais valores contidos em seus registros.

Muitos modems, rádios modem e gateways suportam o Modbus. Alguns desses dispositivos de comunicação são, inclusive, projetados para trabalhar com o protocolo Modbus. Na utilização do Modbus em aplicações wireless um cuidado especial deve ser tomado em relação a latência dos sistemas, fazendo com que os atrasos nas respostas aos comandos Modbus sejam maiores do que os tempos observados em redes cabeadas.

O frame de comunicação Modbus
Um frame de comunicação no protocolo Modbus é composto de:

  • Endereço
  • Função de comando
  • Dados
  • Checksum

Formato do frame Modbus RTU


Observações sobre CRC:

  • Polinômio: x16x15 + x2 + 1 (CRC-16-ANSI também conhecido como CRC-16-IBM, polinômio algébrico normal hexadecimal 8005 e invertido A001).
  • Valor inicial: 65,535.
  • Exemplo de frame em hexadecimal: 01 04   02   FF   FF   B8   80 (CRC-16-ANSI calculado de 01 a FF, resultando 80B8, sendo transmitido o Byte menos significativo primeiro e depois o Byte mais significativo.

Formato do frame Modbus ASCII

Endereço, função, dados e LRC são todos pares de caracteres ASCII que representam valores hexadecimais. Por exemplo, o valor 122 (7 x 16 + 10) será representado por “7A”.

LRC é calculado como a soma dos valores de 8 bits, negado (complemento de dois) e codificado como um valor de 8 bits. Exemplo: se o endereço, função e dados são 247, 3, 19, 137, 0 e 10, a soma é 416. O complemento de dois é (-416), reduzido em 8 bits é 96, que será representado por 60 em hexadecimal. O frame resulta: F7031389000A60<CR><LR>

Formato do frame Modbus TCP

O identificador da unidade é utilizado em redes com diversos dispositivos Modbus, como em sistemas com gateways. Nesse caso, o identificador de unidade informa o endereço do dispositivo por trás do gateway. Em modo nativo, os dispositivos Modbus TCP normalmente ignoram o identificador de unidade.

Os valores nos dados do frame Modbus são ordenados de forma que o byte mais significativo é transmitido primeiro.

Códigos de função Modbus


As funções 3 e 16 são as mais utilizadas quando utilizamos rádios modem como meio de comunicação pois agrupando os registros diminuímos o tempo total de varredura da comunicação.

Exemplo de interface Modbus


As Interfaces Modbus Alfacomp são uma família de módulos de entradas e saídas analógicas e digitais que comunicam pelo protocolo Modbus.

  • Protocolo de comunicação: Modbus RTU
  • Modbus mestre e escravo
  • Seleção de endereço por DIP switch
  • Alimentação: 10 a 30 VCC
  • Consumo máximo de 200 mA

Protocolo Modbus – Download em PDF

[file_download style=”1″][download title=”Modicon%20-%20Modbus%20Protocol%20-%20Reference%20Guide” icon=”style2-thumb-dl-pdf.png” file=”https://alfacompbrasil.com/wp-content/uploads/2019/02/Modicon-Modbus-Protocol-Reference-Guide.pdf&#8221; package=”” level=”” new_window=””]Guia%20de%20refer%C3%AAncia%20do%20protocolo%20Modbus%20da%20Modicon.[/download][/file_download]

Solicite informações adicionais ou o preço de Interfaces Modbus

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”7356, 7154, 7010, 2143, 4509, 4120, 1156″ text_color=”undefined” hide_author=”” ][/recent_posts]
[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”most_recent_posts” posts_num=”5″ selectable_posts=”” text_color=”undefined” hide_author=”” ][/recent_posts]

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]
As Interfaces Modbus funcionam como remotas de I/O distribuído e podem ser aplicadas nas mais diversas áreas da automação industrial, como monitoramento remoto de variáveis de processo, redes distribuídas de automação e controle, ligar e desligar um motor remotamente, etc.

 

As Interfaces Modbus são uma família de módulos de entradas e saídas analógicas e digitais que comunicam pelo protocolo Modbus.

[img_text_aside style=”2″ image=”https://alfacompbrasil.com/wp-content/uploads/2019/05/IM2020-1-sf-236×300.jpg&#8221; image_alignment=”left” headline=”Caracter%C3%ADsticas%20b%C3%A1sicas%20das%20interfaces%20Modbus” alignment=”left”]

  • Protocolo de comunicação: Modbus RTU
  • Modbus mestre e escravo
  • Seleção de endereço por DIP switch
  • Alimentação: 10 a 30 VCC
  • Consumo máximo de 200 mA

[/img_text_aside]

A família de interfaces Modbus da Alfacomp foi especialmente desenvolvida para compor sistemas de alto desempenho e baixo custo. As interfaces funcionam como remotas de I/O distribuído e, portanto, podem ser aplicadas nas mais diversas áreas da automação industrial, como monitoramento remoto de variáveis de processo e controles, ligar e desligar um motor remotamente, etc.

As IMs da Alfacomp estão disponíveis em seis diferentes configurações, cada uma com caraterísticas específicas para sua aplicação. Todos modelos possuem interface serial RS485 para conexão com outros dispositivos como Rádio Modem e Modem GPRS. O protocolo de comunicação disponível nas interfaces é o Modbus RTU, com possibilidade de operar como mestre ou escravo da rede.

Modelos e configurações das interfaces Modbus

IM4000 04 entradas analógicas 0 a 20 ou 4 a 20mA
IM0400 04 saídas analógicas 4 a 20mA
IM0080 08 entradas digitais
IM0008 08 saídas digitais
IM2020 02 entradas analógicas 0 a 20 ou 4 a 20mA + 02 entradas digitais
IM0202 02 saídas analógicas 4 a 20mA + 02 saídas digitais

Especificações técnicas das interfaces Modbus

  • Tensão de Alimentação: 10 a 30 VCC
  • Consumo máximo: 200mA
  • Proteção: Supressor de transientes e fusíveis rearmáveis
  • Protocolo: MODBUS RTU — mestre e escravo (IM0400, IM0008 e IM0202) escravo (IM4000, IM0080 e IM2020)
  • Velocidade serial: 1200, 9600, 57600 e 115200 bps
  • Entradas Analógicas: 0 a 20 ou 4 a 20mA, impedância de 220ohms
  • Saídas Analógicas: 4 a 20mA
  • Resolução das entradas analógicas: 12bits
  • Resolução das saídas analógicas: 10 bits
  • Entradas Digitais: tipo PNP em 12 ou 24V
  • Saídas Digitais: tipo PNP 12 ou 24Vcc/0,5A máx
  • Temperatura de operação: 0° a +60°C
  • Dimensões (AxLxP): 95 x 23 x 130mm

Interface Modbus com 4 entradas analógicas – IM4000

Interface Modbus com 4 saídas analógicas – IM0400

Interface Modbus com 8 entradas digitais – IM0080

Interface Modbus com 8 saídas digitais – IM0008

Interface Modbus com 2 entradas analógicas e 2 entradas digitais – IM2020

Interface Modbus com 2 saídas analógicas e 2 saídas digitais – IM0202


[file_download style=”1″][download title=”Interfaces%20Modbus%20-%20Manual%20do%20usu%C3%A1rio” icon=”style2-thumb-dl-pdf.png” file=”https://alfacompbrasil.com/wp-content/uploads/2019/03/Interfaces-Modbus-Manual-do-usuário.pdf&#8221; package=”” level=”” new_window=””]Manual%20de%20instala%C3%A7%C3%A3o%20e%20ajuste%20das%20Interfaces%20Modbus%20de%20entradas%20e%20sa%C3%ADdas%20anal%C3%B3gicas%20e%20digitais.[/download][/file_download]

Solicite informações adicionais ou uma cotação

Protocolo Modbus

Modbus é um Protocolo de comunicação de dados utilizado em sistemas de automação industrial. Criado originalmente no final da década de 1970, mais especificamente em 1979, pela fabricante de equipamentos Modicon. É um dos mais antigos e até hoje mais utilizados protocolos em redes de Controladores lógicos programáveis (CLP) para aquisição de sinais (0 ou 1) de instrumentos e comandar atuadores. A Schneider Electric (atual controladora da Modicon) transferiu os direitos do protocolo para a Modbus Organization (Organização Modbus) em 2004 e a utilização é livre de taxas de licenciamento. Por esta razão, e também por se adequar facilmente a diversos meios físicos, é utilizado em milhares de equipamentos existentes e é uma das soluções de rede mais baratas a serem utilizadas em Automação Industrial.

Características técnicas do Modbus

O Modbus equivale a uma camada de aplicação e pode utilizar o RS232RS485 ou Ethernet como meios físicos – equivalentes camada de enlace (ou link) e camada física do modelo. O protocolo possui comandos para envio de dados discretos (entradas e saídas digitais) ou numéricos (entradas e saídas analógicas).

Modelo de comunicação

O protocolo Modbus define que o modelo de comunicação é do tipo mestre-escravo (ou cliente-servidor). Assim, um escravo não deve iniciar nenhum tipo de comunicação no meio físico enquanto não tiver sido requisitado pelo mestre. Por exemplo, a estação mestre (geralmente um PLC) envia mensagens solicitando dos escravos que enviem os dados lidos pela instrumentação ou envia sinais a serem escritos nas saídas, para o controle dos atuadores ou nos registradores. A imagem abaixo mostra um exemplo de rede Modbus com um mestre (CLP) e três escravos (módulos de entradas e saídas, ou simplesmente E/S). Em cada ciclo de comunicação, o CLP lê e escreve valores em cada um dos escravos.

Colisões de comunicação

É possível haver colisões durante o acesso ao meio compartilhado, e o protocolo não é específico em como solucioná-las. Como ilustração de um problema possível, suponha que, em uma dada aplicação do protocolo Modbus sobre um barramento RS485, o mestre requisita seus escravos em sequência. Suponha também que o mestre, após um tempo específico, passa a requisitar o escravo seguinte, tendo recebido ou não uma resposta do escravo anterior. Nesse caso, se o primeiro escravo demora mais tempo para responder do que o tempo que o mestre espera, pode acontecer de o primeiro escravo responder bem no período em que o mestre resolveu fazer a requisição ao escravo seguinte, ou no período em que o segundo escravo já tinha iniciado sua resposta, havendo colisão no meio. Não há nada especificado no protocolo para resolver esse tipo de problema. Cabe à aplicação implementar corretamente o acesso ao meio, os parâmetros de time-out etc.

Frames de comunicação

A comunicação em Modbus obedece a um frame que contém o endereço do escravo, o comando a ser executado, uma quantidade variável de dados complementares e uma verificação de consistência de dados (CRC).

Exemplo-1: Se o PLC precisa ler as 10 primeiras entradas analógicas (do endereço 0000 ao 0009) no módulo 2. Para isso é preciso utilizar o comando de leitura de múltiplos registros analógicos (comando 3). O frame de comunicação utilizado é mostrado abaixo (os endereços são mostrados em sistema hexadecimal):

A resposta do escravo seria um frame semelhante composto das seguintes partes: O endereço do escravo, o número do comando, os dez valores solicitados e um verificador de erros (CRC). Em caso de erros de resposta (por exemplo um dos endereços solicitados não existe) o escravo responde com um código de erro.

Uma pequena recordação: Para se entender este frame de resposta, antes precisamos saber corretamente o que é um byte. Cada palavra tem as seguintes formas, – bit, – nible, – byte e – word. Segue abaixo uma tabela representação de cada formato.


A resposta para a pergunta acima seria a seguinte:

O primeiro byte (02) é o endereço do Escravo; O segundo byte (03) é a função utilizada para leitura, sendo essa um Holding Register; O terceiro byte é a quantidade de endereços que o Escravo está enviando ao Mestre, sendo que a cada 2 bytes se forma uma Word que significa uma palavra de 16 bit, por isso este frame tem 14 (hexadecimal) = 20 bytes que é = 10 word ou 10 palavras de 16 bits que tem seu range mínimo de -32768 até 32767. Com isso entendemos que o Escravo respondeu 10 endereços ao Mestre e todos com o valor zero.

Comandos Modbus

A tabela a seguir apresenta os principais comando (funções) do protocolo Modbus.

Modbus RTU

O termo RTU, do inglês Remote Terminal Unit, refere-se ao modo de transmissão onde endereços e valores são representados em formato binário. Neste modo para cada byte transmitido são codificados dois caracteres. Números inteiros variando entre -32768 e 32767 podem ser representados por 2 bytes. O mesmo número precisaria de quatro caracteres ASCII para ser representado (em hexadecimal). O tamanho da palavra no modo RTU é de 8 bits.

Modbus ASCII

Os dados são dados codificados e transmitidos através de caracteres ASCII – cada byte é transmitido através de dois caracteres. Apesar de gerar mensagens legíveis por pessoas este modo consome mais recursos da rede. Por exemplo, para transmitir o byte 0x5B este deverá ser codificado em dois caracteres ASCII: 0x35 (“5”) e 0x42 (“B”). O tamanho da palavra no modo ASCII é de 7 bits. Somente são permitidos caracteres contidos nos intervalos:

  • 0-9
  • A-F

O intervalo entre duas mensagens deve ser de 3,5 caracteres.

Modbus TCP

Aqui os dados são encapsulados em formato binário em frames TCP para a utilização do meio físico Ethernet (IEEE 802.3). Quando o Modbus/TCP é utilizado, o mecanismo de controle de acesso é o CSMA-CD (Próprio da rede Ethernet) e as estações utilizam o modelo cliente-servidor.

Retrocompatibilidade e Conversores

Suponha que um PLC precisa trocar dados usando o protocolo Modbus-TCP com dispositivos antigos, que não suportam esse protocolo, e estão conectados em um barramento RS-485. Nesse caso, existem no mercado conversores Modbus-TCP<->Modbus Serial RS-232/485. Esses dispositivos diferem de um conversor puramente físico, que somente converteria os sinais elétricos de um protocolo físico para outro. Eles, em vez disso, implementam os protocolos TCP e IP, além de implementar também o protocolo Modbus.

Isso é necessário, pois é preciso haver uma conexão TCP entre o conversor e o CLP, já que essa conexão não pode existir diretamente com os equipamentos antigos. O conversor precisa, portanto, implementar o protocolo TCP e aceitar conexões através de sockets etc. Caso contrário, a comunicação não seria possível.

Além disso, o conversor precisará tirar os dados Modbus – que estão dentro do pacote IP, que por sua vez está dentro do quadro Ethernet – para enviar ao escravo correto no barramento RS-485.

Há também conversores com várias saídas seriais. Nesse caso, é possível separar os escravos em vários barramentos distintos, cada um em uma porta. No primeiro barramento, podem ser colocados os escravos cujos endereços vão de 1 ao 10; no segundo, de 11 a 20, e por aí em diante – isso é só um exemplo.

Nessa configuração, o conversor precisaria ler o pacote Modbus, interpretá-lo ao ponto de saber qual é o endereço do escravo de destino, para então enviá-lo à porta de saída correta.

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”4877, 2952, 2143, 2912, 4547, 1991, 3920, 3784, 3663″ text_color=”undefined” hide_author=”” ][/recent_posts]
 
 
 

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

Este artigo explica como implementar um circuito que permite ler até oito sinais analógicos de 4 a 20 mA na entrada digital de um CLP que não possui entradas analógicas. A solução apresentada possui excelente custo benefício.

Antes de apresentarmos o circuito, faremos algumas definições de base como segue.

O que são sinais analógicos

Um sinal analógico é qualquer sinal contínuo cuja variação no tempo representa a variação de uma grandeza física, fazendo assim uma analogia entre a grandeza e sua representação elétrica.

Exemplo de grandezas físicas que podem ser representadas por sinais analógicos:

  • Temperatura;
  • Pressão;
  • Nível de um líquido ou reservatório.

Exemplo de sinais analógicos:

  • 0 a 10 V;
  • 4 a 20 mA.

Ou seja, podemos, por exemplo, definir que uma temperatura na faixa de 0 oC a 100 oC será representada por um sinal de 4 a 20 mA. Dessa forma, quando a temperatura for 0 oC o sinal terá 4 mA, quando a temperatura for 50 oC o sinal terá 12 mA e quando a temperatura for 100 oC o sinal analógico terá 20 mA.

Um exemplo de sensor de temperatura que opera nessa faixa é o PT100, e o circuito que produz o sinal de 4 a 20 mA é o transdutor de grandezas que converte o sinal do PT100 em sinal analógico.

O que é a entrada analógica do CLP

Entrada analógica de um CLP é a parte do circuito do CLP que lê um sinal analógico e o converte internamente em um valor binário que será armazenado em um ou mais bytes da memória do CLP. As entradas analógicas do CLP são especificadas pelo tipo de sinal (0 a 5 V, 0 a 10 V, 0 a 20 mA, 4 a 20 mA, PT100, termopar, etc.) As entradas analógicas também são especificadas pela sua resolução (8 bits, 10 bits, 12, bits, 16 bits). As entradas analógicas podem estar contidas na CPU principal ou em módulos de expansão.

Converta sinais analógicos 4 a 20 mA em pulsos para ler na entrada digital do CLP

O circuito a seguir consiste em um conversor multiplexado que permite adquirir 8 sinais analógicos de 4 a 20 mA em um sinal de pulsos para ser lido em uma entrada digital rápida de um CLP.

Descrição do funcionamento do conversor multiplexado de sinais analógicos

Condicionador de entrada – Cada sinal analógico de entrada é condicionado por este circuito. O termistor PTC funciona como um fusível rearmável que “abre” quando o sinal de 4 a 20 mA ultrapassa 50 mA, protegendo o circuito sensor. O diodo TVS protege contra sobre tensão. O resistor de 220 ohms é sensor de entrada e R9 e C1 funcionam como filtro passa baixa.

Chave analógica multiplex – O circuito integrado CD4051 recebe os 8 sinais analógicos nas entradas X0 a X7 e repassa o sinal selecionado na saída X.

O sinal amostrado na saída X é aquele definido na seleção feita nas entradas A, B e C.

As entradas A, B e C são ligadas em saídas digitais do CLP.

 
 
 

Circuito amplificador  – Este circuito, formado por dois amplificadores operacionais do CI LM324, tem a função de amplificar e ajustar o ZERO (offset) do circuito.

Conversor de tensão para pulsos – Esta parte do circuito tem a função de converter o sinal de 4 a 20 mA, previamente convertido em tensão, para pulsos. O ajuste de SPAN é feito no trimpot R39. O CI LM331 funciona como conversor de tensão para pulsos e o transistor BC327 converte o nível para pulsos em 24 VCC, adequado a entrada digital do CLP.

Lógica de funcionamento do conversor multiplex de sinais analógicos

O circuito é composto por uma chave analógica multiplex que seleciona uma entre 8 entradas analógicas. Esta seleção é feita nas três entradas SL0, SL1 e SL2. O canal selecionado fornece o sinal para o conversor de corrente para freqüência. O conversor de freqüência fornece na saída OUT um sinal pulsado de freqüência proporcional a corrente do canal selecionado. O sinal tem a amplitude da tensão de alimentação, normalmente 24V, e freqüência variando de 600Hz a 3000Hz. Na aplicação, o CLP deverá ser programado para selecionar sequencialmente os 8 canais, e contar os pulsos relativos a cada entrada analógica. Abaixo é mostrado o algoritmo sugerido.

  1. Canal = 0
  2. Aguarda 0,25 segundos
  3. Contador = 0
  4. Aguarda 0,25 segundos
  5. Leitura da Entrada (Canal) = (Contador – 250)
  6. Canal=Canal+1
  7. Se Canal > 7, então Canal = 0
  8. Volta para 2

Com o algoritmo acima, para cada entrada digital será lido um valor na faixa de 0 a 999, proporcional a corrente da entrada. E o ciclo total de varredura fica em 4 segundos.

Calibração do circuito

Siga o seguinte procedimento:

  1. Desligar as entradas SL0, SL1 e SL2
  2. Ligar a alimentação
  3. Ligar uma fonte de corrente à entrada EA0
  4. Ajustar a fonte de corrente para 20 mA
  5. Ajustar o trimpot SPAN para obter 3000 Hz na saída OUT
  6. Ajustar a fonte de corrente para 4 mA
  7. Ajustar o trimpot ZERO para obter 600 Hz na saída OUT
  8. Repetir os passos de 4 a 7 até completar a calibração

[img_text_aside style=”2″ image=”https://alfacompbrasil.com/wp-content/uploads/2018/11/Interface-analógica-IA2820.jpg&#8221; image_alignment=”left” headline=”Conversor%20anal%C3%B3gico%20IA2820″ alignment=”left”]

conversor analógico IA2820 constitui um conversor multiplexado de sinais. Tem a capacidade de converter até 8 sinais analógicos de corrente de 4 a 20mA gerando uma saída em pulsos, de frequência proporcional à entrada selecionada. Sua utilização destina-se às configurações de CLP que possuem entrada de contagem rápida, viabilizando aquisição de até 8 sinais analógicos por módulo IA2820 a um preço extremamente competitivo. Para cada entrada analógica, o módulo é dotado de conexão destacável com: 24V, Sinal e GND. Dessa forma, o módulo funciona também como borneira economizando espaço e tempo de montagem.

[/img_text_aside]

Leia também 

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”7311, 7229, 7202, 7154, 7010, 6601, 5500″ text_color=”undefined” hide_author=”” ][/recent_posts]
 
 

Aprenda a programar o CLP Haiwell sem custo

Acompanhe o curso online de programação do CLP Haiwell sem sair de casa, utilizando apenas o seu computador e sem custo.

O CLP Haiwell apresenta versatilidade e alto desempenho para as mais diversas aplicações industriais como injeção de plástico, empacotamento, tecelagem, fabricação de medicamentos assim como para aplicações em processos médico-hospitalares, meio-ambiente, saneamento, serviços municipais, gráficas, construção civil, automação predial, sistemas de condicionamento de ar, máquinas CNC, e outros campos do controle e automação.

O CLP Haiwell tem sua capacidade expandida através de diversas interfaces que ampliam suas entradas digitais, saídas digitais, entradas analógicas, saídas analógicas, entradas de contagem rápida, saídas digitais de pulso de alta velocidade e portas de comunicação.

Acompanhe o curso online de programação do CLP Haiwell sem sair de casa, utilizando apenas o seu computador e sem custo.

Após a aula 8 você envia sua avaliação para a Alfacomp e recebe um certificado com seu índice de aproveitamento.

Envie sua foto com o certificado e faça parte de nossa galeria. Baixe todas as aulas nos links abaixo.

Assista ao vídeo e baixe o arquivo pdf das aulas

Assista ao vídeo e baixe o arquivo da avaliação

Haiwell – O CLP com melhor custo-benefício do mercado

Diferenciais do CLP Haiwell

  • Suporte técnico Alfacomp
  • Ferramenta gratuita de programação com capacidade de simulação do programa sem necessidade de conectar ao CLP
  • Processador ARM de alto desempenho e relógio de tempo real
  • Portas RS232 e RS485 nativas com MODBUS mestre e escravo
  • Porta Ethernet opcional com MODBUS TCP
  • Bornes de conexão removíveis para facilidade de manutenção
  • Entradas e saídas digitais rápidas (200 KHz)

 

Conheça o CLP Haiwell seguindo este passo a passo

Características gerais

Ethernet

O CLP mestre e os módulos remotos suportam comunicação Ethernet e até 5 portas RS232 ou RS485 comunicando simultaneamente. Pela rede é possível comunicar, programar, monitorar e trocar dados com os CLPs. A porta Ethernet pode ser utilizada para intercomunicar CLPs, IHMs e computadores.

Atualização do firmware

Através deste recurso é possível alterar e atualizar o firmware dos CLPs. Desta forma, recursos novos podem ser adicionados a equipamentos anteriores na medida que forem desenvolvidos pela fabricante.

Poderosos recursos de comunicação

Os CLPs possuem duas portas seriais nativas, uma RS232 e uma RS485, que podem ser expandidas para até 5 portas. Cada porta pode ser utilizada tanto como mestre quanto como escravo na comunicação. A comunicação em rede pode ser 1:N, N:1 e N:N e uma grande variedade de interfaces IHM de mercado são suportadas, assim como inversores, medidores e periféricos diversos.

Suporte a múltiplos protocolos de comunicação

Os CLPs possuem instalados de forma nativa os protocolos de comunicação MODBUS RTU e ASCII, Free Communication Protocol e o Haiwellbus High-Speed Communication Protocol of Xiamen Haiwell Technology Co., Ltd. A composição de arquiteturas sofisticadas e complexas são facilitadas pois basta uma única instrução para estabelecer um modo de comunicação. Desta forma, problemas como conflitos de comunicação, colisões e problemas de handshaking são minimizados e até eliminados, sendo possível a coexistência simultânea de diversos protocolos diferentes.

Função de contagem de pulsos em alta velocidade

Os CLPs suportam até 8 canais duplex de alta velocidade (200 kHz) de contagem de pulsos. São possíveis 7 modos de funcionamento com as entradas de contagem rápida (pulso / direção 1 oitava, pulso / direção 2 oitavas, pulso direto / reverso 1 oitava, pulso direta / reverso 2 oitavas, fases A / B 1 oitava, fases A / B 2 oitavas, fases A / B 4 oitavas), e três tipos de comparação (comparação de uma etapa, comparação absoluta e comparação relativa), e ainda é possível a comparação de 8 valores fixos com função de self-learning.

Medição de frequência de pulsos de alta velocidade

São possíveis até 16 canais de 200 kHz de alta velocidade para a medição de frequência.

Saída de pulsos de alta velocidade

São possíveis até 8 canais duplex de pulsos de saída em 200 kHz. Desta forma, até 8 motores de passos podem ser controlados. Os CLPs possuem funções que permitem controlar aceleração e desaceleração, envelopes de múltiplos segmentos, um sinal de saída de sincronismo facilita a sincronização precisa dos motores. Usadas de forma independente, estão disponíveis até 16 saídas rápidas para funções de PWM, podendo controlar até 16 motores de passo ou servos.

Função de controle de movimentação

Os CLPs Haiwell suportam até 8 canais de 200 kHz para controle de movimentação que permitem interpolação linear, interpolação circular, pulso de saída de referência, endereço absoluto, endereço relativo, compensação de folga, retorno ao ponto de partida e definição de ponto de partida.

Função de controle PID

Até 32 malhas de controle PID são suportadas pelos CLPs Haiwell. Estão disponíveis a auto sintonia, o controle de temperatura por lógica Fuzzy, o controle de temperatura por curva TTC, o controle de válvulas e de outros dispositivos industrias.

Captura de bordas e interrupções

Os CLPs suportam até 8 canais para detecção de bodas de subida e descida de sinais para funções de interrupção. Todas entradas permitem a aplicação de filtros para a correta detecção dos sinais. Estão disponíveis 52 níveis de interrupção em tempo real.

Funções de processamento analógico de alto desempenho

Os registros AI das entradas analógicas podem ser acessados diretamente e estão disponíveis funções para conversão de unidades de engenharia, ajuste de frequência de amostragem e correção de zero. Os registros AQ das saídas analógicas podem ser convertidos para unidades de engenharia e podem ser configurados para manter seus valores.

Proteção por senha

Existem três níveis de senhas para garantir a proteção dos CLPs e do trabalho desenvolvido em sua programação: senha de proteção de programas, senha de proteção de blocos, senha de acesso ao hardware.

Características diversas

Além das características já citadas, os CLPs Haiwell também possuem função de autodiagnóstico, função de proteção contra falha de energia, relógio de tempo real, operações matemáticas em ponto flutuante, etc.

Receba nossa Newsletter












 

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

O que é a insensibilização eletrônica de aves e suínos?

A insensibilização eletrônica tem como objetivo provocar no animal um estado cerebral de perda dos sentidos, contudo sem a perda das funções vitais. Uma insensibilização de boa qualidade resulta em um estado de atordoamento em que o animal fica imóvel, e após alguns segundos, se não for abatido, recobra os movimentos sem sequelas.

[video_player type=”youtube” youtube_auto_play=”Y” youtube_show_title_bar=”Y” style=”1″ dimensions=”560×315″ width=”560″ height=”315″ align=”center” margin_top=”0″ margin_bottom=”20″ ipad_color=”black”]aHR0cHM6Ly95b3V0dS5iZS9ZaXVRMG5vVjZVOA==[/video_player]

Como funciona o insensibilizador eletrônico?

O sinal elétrico é obtido pela retificação da energia elétrica da rede obtendo-se, assim, tensão contínua que então é novamente transformada em tensão alternada pela utilização de circuito de chaveamento dotado de transistores de efeito de campo de potência.

O sinal alternado gerado é, então, ajustado em freqüência e tensão. Finalmente, o sinal elétrico é rebaixado em tensão pelo uso de um transformador isolador especialmente projetado para operar na faixa de frequências de 500 Hz a 1000 Hz.

Exemplo de eletrônica para a insensibilização de aves e suínos

Veja um exemplo de circuito abaixo.

Módulo de controle 2022

Este módulo gera os sinais de chaveamento para o módulo de potência. Além disso, monitora a corrente fornecida pelo módulo de potência, diminuindo a largura dos pulsos de chaveamento, de maneira a limitar a energia fornecida.

Ajuste de frequência Permite ajustar a frequência do sinal de saída dentro da faixa de 500 a 1000 Hz.
Ajuste de tensão Permite ajustar a largura dos pulsos da onda quadrada de 0 a 100% de largura. 0% corresponde a uma tensão RMS igual a zero e 100% corresponde a uma tensão RMS de aproximadamente 280 V na saída do módulo de potência e de 100 V na saída do transformador isolador.
Ajuste de corrente Permite ajustar entre 0,5 A e 6 A corrente de saída do módulo de potência, na qual começa a ser limitada a largura dos pulsos da onda quadrada entregue pelo módulo. Ex.: Digamos que o trimpot de ajuste de corrente esteja no meio.
Isto corresponde a aproximadamente 3 A. Para cargas até 3 A, a largura dos pulsos da onda quadrada que sai do módulo de potência será aquela ajustada pelo potenciômetro de ajuste de tensão.
Para cargas acima de 3 A, a largura do pulso é diminuída bastante, ocasionando a proteção por limitação de potência entregue.
Ou seja, a amplitude da onda continua sendo de 100 Vpp, mas a largura cai, diminuindo a tensão RMS e consequentemente a potência entregue.

Módulo de potência 9801

Este módulo consiste em um inversor em ponte utilizando transistores FET. O módulo incorpora ainda os capacitores de filtragem da tensão retificada pela ponte retificadora SKB25/4.

Este módulo transforma a tensão DC de 331 V em uma tensão alternada de formato quadrado e frequência e largura de pulsos comandados pelo módulo 2022.

Consequências da insensibilização de má qualidade

A utilização de insensibilizadores em 60 Hz ou mal ajustados pode resultar em:

  • Animal agitado, sem perda de movimentos
  • Morte do animal
  • Hematomas e derrames
  • Quebra de ossos
  • Salpicamento de sangue
  • Baixo índice de remoção de sangue

Quais são as normas para a insensibilização eletrônica de aves e suínos?

Veja abaixo dois documentos contendo normas e legislação para o abate de aves e suínos.
[button_2 align=”center” href=”https://materiais.alfacomp.ind.br/abate_aves”%5DBaixe agora o documento da WSPA sobre abate humanitário de aves[/button_2]
[button_2 align=”center” href=”https://materiais.alfacomp.ind.br/normas_frigorificos”%5DBaixe agora o conjunto de normas técnicas para frigoríficos de suínos[/button_2]

Insensibilizador eletrônico de aves IE2001

[img_text_aside style=”1″ image=”https://alfacompbrasil.com/wp-content/uploads/2020/09/IE2001-4-sf.jpg&#8221; image_alignment=”left” headline=”Insensibilizador%20eletr%C3%B4nico%20de%20aves%20IE2001″ alignment=”left”]

O Insensibilizador Eletrônico de Aves IE2001 constitui a mais moderna e eficiente solução para a insensibilização eletrônica de frangos no momento do abate.

Contando com resultados comprovados, o IE2001 demonstrou resultados superiores na qualidade da insensibilização, assim como na eficiência da sangria.

[/img_text_aside]
[file_download style=”1″][download title=”Insensibilizador%20de%20aves%20IE2001%20-%20Folha%20de%20dados” icon=”style1-Pdf-64×64.png” file=”https://alfacompbrasil.com/wp-content/uploads/2020/09/Insensibilizador-de-aves-IE2001-Folha-de-dados.pdf&#8221; package=”” level=”” new_window=””]Manual%20contendo%20especifica%C3%A7%C3%B5es%20t%C3%A9cnicas%20do%20insensibilizador%20de%20aves%20IED2001.[/download][/file_download]

Funcionamento

O Insensibilizador de Aves IE2001 gera uma forma de onda elétrica de características especiais portanto  resultando em alto impacto sobre o sistema nervoso central e baixo impacto sobre o sistema muscular.

O sinal elétrico é obtido pela retificação da energia elétrica da rede obtendo-se, assim, tensão contínua que então é novamente transformada em tensão alternada pela utilização de circuito de chaveamento dotado de transistores de efeito de campo de potência.

O sinal alternado gerado é, então, ajustado em freqüência e tensão. Finalmente, o sinal elétrico é rebaixado em tensão pelo uso de um transformador isolador especialmente projetado para operar na faixa de frequências de 500 Hz a 1000 Hz.

insensibilização eletrônica de aves

Os dois terminais de saída do insensibilizador deverão ser conectados respectivamente à nória transportadora e ao eletrodo imerso em água da cuba de insensibilização.

Especificações Técnicas

  • Alimentação: 220 VCA
  • Consumo: 200 VA máximo
  • Tensão de saída: ajustável de 0 a 100  V
  • Freqüência de saída: 500 Hz a 1000 Hz
  • Corrente de saída: até 1,5 A
  • Temperatura de operação: 0° to 40° C
  • Dimensões: A = 600 mm, L = 400 mm, P = 200 mm
  • Proteção contra sobrecarga
  • Indicadores digitais de tensão e corrente

[img_text_aside style=”1″ image=”https://alfacompbrasil.com/wp-content/uploads/2020/09/IE2001-9-sf.jpg&#8221; image_alignment=”left” headline=”Composi%C3%A7%C3%A3o%20do%20painel%20do%20IE2001″ alignment=”left”]

O insensibilizador IE2001 utiliza os módulos Alfacomp 2022 e 9801, consagrados pelo mercado da indústria da carne.

[/img_text_aside]

Insensibilizador eletrônico de suínos IE2002

[img_text_aside style=”1″ image=”https://alfacompbrasil.com/wp-content/uploads/2018/08/IE2002-4.png&#8221; image_alignment=”left” headline=”Insensibilizador%20eletr%C3%B4nico%20de%20su%C3%ADnos” alignment=”left”]

O Insensibilizador Eletrônico de Suínos IE2002 de 3 eletrodos produz uma insensibilização ideal quando corretamente aplicado. Os animais praticamente não se movimentam após a insensibilização, facilitando a operação de sangria e colocação da maneia. O rompimento de vasos sanguíneos periféricos fica extremamente reduzido.

  • Tensão ajustável
  • Frequência ajustável
  • Limite de corrente ajustável
  • Padrão de mercado

[/img_text_aside]
[file_download style=”1″][download title=”Especifica%C3%A7%C3%B5es%20t%C3%A9cnicas%20do%20IE2002″ icon=”style2-thumb-dl-pdf.png” file=”https://alfacompbrasil.com/wp-content/uploads/2020/06/Insensibilizador-de-suínos-IE2002-Folha-de-dados.pdf&#8221; package=”” level=”” new_window=””]Dados%20t%C3%A9cnicos%20do%20Insensibilizador%20Eletr%C3%B4nico%20de%20Su%C3%ADnos%20IE2002.%20[/download][/file_download]

Funcionamento

O Insensibilizador de suínos é um equipamento eletrônico que gera tensões e correntes em alta frequência e onda quadrada, utilizado para efetuar a insensibilização de suínos no momento do abate.

A utilização da alta frequência com controle da potência aplicada, em lugar de utilizar tensão senoidal a 60 Hz, demonstrou diminuição das ocorrências de hematomas, salpicamentos e quebras de ossos, levando a uma melhora na qualidade da carne.

O Insensibilizador retifica a tensão de alimentação (220 VCA) gerando uma tensão DC de 311 volts. Esta tensão é utilizada por um circuito de chaveamento em ponte que alimenta um transformador isolador com uma onda quadrada de 311 volts pico a pico e com frequência e largura de pulsos ajustáveis. A saída do transformador constitui a tensão de insensibilização.

[img_text_aside style=”1″ image=”https://alfacompbrasil.com/wp-content/uploads/2018/08/IE2002-6.png&#8221; image_alignment=”left” headline=”Composi%C3%A7%C3%A3o%20do%20painel%20do%20IE2002″ alignment=”left”]
O insensibilizador IE2002 utiliza os módulos Alfacomp 2022 e 9801, consagrados pelo mercado como a eletrônica mais utilizada na insensibilização de suínos. Um CLP com IHM controlam o sequenciamento do funcionamento do equipamento.

Leia também

[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”selectable_posts” posts_num=”” selectable_posts=”7356, 7154, 7010, 2143, 4509, 4120, 1156″ text_color=”undefined” hide_author=”” ][/recent_posts]
[recent_posts style=”1″ rows=”one” title = “Amazing Content” text_excerpt=”Y” mode=”most_recent_posts” posts_num=”5″ selectable_posts=”” text_color=”undefined” hide_author=”” ][/recent_posts]
 

Como medir grandezas elétricas em redes trifásicas

O equipamento que permite ler e armazenar grandezas elétricas em redes trifásicas de forma prática e fácil é o multimedidor de grandezas elétricas.

Este equipamento atua como um poderoso sistema de monitoramento de energia elétrica, avaliando de forma contínua e em tempo real a tensão e a corrente nas três fases pelo método True RMS, permitindo o cálculo preciso de todos os itens de interesse.

Saiba como medir grandezas elétricas

Os parâmetros do registrador podem ser ajustados no próprio equipamento, através de uma interface amigável ou via interface serial padrão elétrico RS-485, pelo protocolo MODBUS-RTU. A programação e a operação de um multimedidor são abordadas ao longo deste artigo.

[button_2 align=”center” href=”https://www.alfacomp.ind.br/pages/download_request/68″%5DBaixe aqui o manual técnico do multimedidor ST9250R[/button_2]

[video_player type=”youtube” youtube_auto_play=”Y” style=”1″ dimensions=”560×315″ width=”560″ height=”315″ align=”center” margin_top=”0″ margin_bottom=”20″ ipad_color=”black”]aHR0cHM6Ly95b3V0dS5iZS81QUNIT3MzZFI5MA==[/video_player]

Quais são as características do multimedidor de grandezas elétricas

A partir das grandezas lidas (tensão e corrente nas três fases), o ST9250R exibe, sequencialmente, as seguintes medidas:

  • tensão fase-neutro;
  • tensão fase-fase;
  • tensão no primário (somente se TP ≠ 1);
  • corrente;
  • fator de potência por fase;
  • fator de potência total;
  • potência ativa por fase;
  • potência ativa total;
  • potência aparente por fase;
  • potência aparente total;
  • potência reativa por fase;
  • potência reativa total;
  • consumo ativo;
  • consumo reativo;
  • demanda ativa;
  • demanda reativa;
  • demanda média ativa;
  • demanda máxima ativa;
  • demanda média apar­ente;
  • demanda máxima aparente;
  • frequência, falta de kVAr por fase;
  • falta de kVAr total;
  • excesso de kVAr por fase;
  • excesso de kVAr total;
  • tempo de funcio­namento;
  • vazão média e volume do fluxo de água e gás;
  • distorção harmônica total e conteúdo harmônico até a 49ª componente impar.

O equipamento conta com a função de alarme, que é acionado pelo evento programado e desligado via painel (pressionando a tecla ESC). Os eventos que provocam alarme podem ser:

  • o fator de potência muito indutivo;
  • o fator de potência muito capacitivo;
  • a tensão alta na alimentação do sistema;
  • a tensão baixa na alimentação do sistema;
  • a sobre corrente na carga;
  • a subcorrente na carga;
  • o conteúdo harmônico elevado (de corrente e tensão);
  • a demanda ativa excessiva.

Os eventos de alarmes geram ocorrências que são gravadas em memória. As últimas 100 ocorrências ficam registradas.

Saiba como medir grandezas elétricas

Como instalar multimedidor de grandezas elétricas

Inspeção visual

Antes de instalar o produto, proceda a uma cuidadosa inspeção visual, para certificar-se de que o equipamento não apresenta danos provocados pelo transporte.

Esquemas elétricos de ligações

As figuras a seguir mostram os esquemas de ligação para a instalação dos registradores ST9250R.

Observações importantes na instalação do equipamento

  • O transformador de corrente (TC) deve medir a corrente total a ser monitorada.
  • Deve-se colocar um TC específico para a medição de corrente (sempre na relação de transformação XXXX/5A). Caso já exista um instrumento de medição, a medição de corrente pode aproveitar o TC do instrumento, desde que a corrente do secundário do TC seja sempre ligada em série com a do medidor.
  • Deve-se colocar um TC específico para a medição de corrente (sempre na relação de transformação XXXX/5A). Caso já exista um instrumento de medição, a medição de corrente pode aproveitar o TC do instrumento, desde que a corrente do secundário do TC seja sempre ligada em série com a do medidor.

Saiba como medir grandezas elétricas

Painéis do multimedidor de grandezas elétricas

Elementos do painel traseiro

O painel traseiro apresenta todas as conexões necessárias à operação do equipamento. Basta ligar os conectores adequados conforme a indicação da serigrafia do painel.

Saiba como medir grandezas elétricas

Elementos do painel frontal

A figura a seguir apresenta o painel frontal do registrador ST9250R.

Saiba como medir grandezas elétricas

Nota:

No display o “backlight” (iluminação do display) só é acionado quando uma tecla é pressionada. Caso nenhuma tecla seja pressionada no período de 3 minutos, a iluminação será desligada automaticamente.

Na exibição de “Falta de capacitor por fase”, pressionando-se a tecla ENTER, o display irá alternar entre fase e total. Este procedimento também serve para as potências: ativa, aparente e reativa.

Menus do multimedidor de grandezas elétricas

Saiba como medir grandezas elétricas

As funções do ST9250R estão dispostas na forma de um menu principal e de submenus secundários, como mostra o esquema a seguir:

(*) Pressionando ENTER, alterna exibição dos valores por fase e total.

(**) Se estiver no período de ponta aparece (p).

(***) Pressionando ENTER, alterna exibição do valor atual e anterior (mês).

Nota:

  • Se a tecla ENTER for pressionada durante a exibição de alguma das grandezas do menu Medidas Elétricas, este parâmetro ficará configurado como o preferencial, e será mostrado até que se pressione qualquer tecla.

Descrição dos menus

A seguir é apresentada uma breve descrição de cada um dos menus dos registradores ST9250R. Instruções relativas à programação e à operação do equipamento são apresentadas mais adiante.

Medidas de Grandezas Elétricas

Podemos visualizar as medidas de tensão e corrente de cada fase, frequência, potência aparente, potência ativa, potência reativa, bem como o valor de kVAr que precisa ser adicionado a cada fase do sistema para alca­nçar o set-point.

Além disso, é possível visualizar a totalização dos valores tensão fase-neutro, tensão fase-fase, tensão no primário (somente se TP ≠ 1), corrente, fator de potência por fase, fator de potência total, potência ativa por fase, potência ativa total, potência aparente por fase, potência aparente total, potência reativa por fase, potência reativa total, consumo ativo, consumo reativo, demanda ativa e demanda reativa (média e máxima) frequência, falta de kVAr por fase e falta de kVAr total, excesso de kVAr por fase e excesso de kVAr total, tempo de funcionamento atual e anterior (mês).

As entradas P1 e P2 são apresentadas como leitoras de pulsos dos sen­sores de vazão de água e gás (respectivamente), e preparadas para trabalhar com sensores do tipo “coletor aberto”.

O equipamento atualiza os valores de vazão média e volume escoado a cada minuto, sendo possível ainda progra­mar uma constante de conversão para ajustar o medidor à realidade do sensor utilizado.

O tempo de funcionamento é cumulativo, não admite ajuste. O valor anterior é atualizado na troca do mês. O valor atual é incrementado quando existir tensão em qualquer uma das fases.

Distorção Harmônica de Tensão e de Corrente

É possível visualizar o conteúdo harmônico total e das harmônicas de cada fase de tensão e corrente até a 49ª ordem.

Programação

Permite a programação dos parâmetros básicos do ST9250R: relação do transformador de potência (TP), relação do transformador de corrente (TC), tensão de entrada, tempo de amostragem, intervalo de integração, fator de potência desejado, endereço MODBUS e horário de ponta (inicio e fim). A programação de horário de ponta é apenas informada na visualização de grandezas não gerando nenhum registro em função desta programação.

Alarmes

O usuário pode definir os valores para o acionamento do alarme. O alarme pode ser ativado por fator de potência muito indutivo, fator de potência muito capacitivo, sobre e subtensão na rede, sobrecorrente, subcorrente ou conteúdo harmônico elevado de tensão, corrente e demanda ativa em excesso.

Data/Hora

Aqui o usuário pode ajustar a data e a hora do relógio interno do equi­pamento.

Status

Neste menu, cada vez que a tecla UP or DOWN for pressionada, uma nova informação será exibida sobre a configuração/status do equipamento ou então sobre algum erro que esteja ocorrendo. As mensagens exibidas no menu Status também aparecem a cada 10 segundos nos outros menus de visualização.

Programação

Liberação de programação

Para evitar que pessoas não autorizadas alterem os parâmetros do regis­trador ST9250R, o software do equipamento conta com uma codificação para a liberação da programação. Para liberar o painel, pressione as teclas UP e ESC simultaneamente. A mensagem “Prog. Autorizada” será exibida no display. A mensagem “Prog. Não Autor.” aparecerá toda vez que o usuário tentar alterar um parâmetro sem ter executado o procedimento de liberação.

Reset dos acumuladores

É possível reiniciar os acumuladores (zerar seus valores) de consumo ativo e reativo, bem como o volume total escoado registrado para cada entrada de pulso. Para isso, pressione as teclas UP, DOWN e ESC simultaneamente. Quando as teclas forem liberadas uma solicitação de confirmação será exibida, confirme o apagamento e TODOS os valores serão zerados. A mensagem “Apagando” aparecerá no display.

Como programar o equipamento

Antes de dar início à programação do ST9250R, execute o procedimento de liberação de painel, conforme descrito anteriormente (pressionando simul­taneamente as teclas UP e ESC).

A programação dos parâmetros é bastante simples, e segue sempre a mesma rotina:

  • Para visualizar os menus, pressione a tecla ESC.
  • Depois, com as teclas UP e DOWN, “role” o display até chegar ao menu desejado. Para acessar os parâmetros do menu, pressione a tecla ENTER.
  • Novamente com as teclas UP e DOWN, selecione o parâmetro que você deseja programar e, depois, pressione ENTER.
  • O próprio valor da grandeza começará a piscar. Altere o valor conforme o desejado utilizando as teclas UP e DOWN.
  • Após a alteração, pressione ENTER para confirmar o valor, ou, para cancelar a alteração do parâmetro e sair sem salvar, pressione ESC. Proceda da mesma forma para alterar qualquer parâmetro de programação.

Descrição dos parâmetros programáveis

O multimedidor ST9250R possui vários parâmetros passíveis de programa­ção, todos disponíveis em três menus: Programação, Alarmes e Data e Hora. Cada um desses menus e seus respectivos submenus ou parâmetros serão descritos a seguir.

Menu Programação

  • Tensão: Valor nominal da tensão fase-neutro da medição. Não requer programação, pois é lido diretamente da rede. Os valores podem ser 127, 220 ou 254 Vac.
  • Transformador de Corrente (TC): Relação do TC utilizado na medição de corrente nas três fases (o tipo do TC deve ser sempre XXXX/5A). Existe uma grande variedade de modelos que podem ser ajustados de acordo com os valores comerciais. Valor padrão: 500.
  • Transformador de Potencial (TP): Relação entre o primário e o secundário do TP. Os valores possíveis são 1 a 500. Valor padrão: 1.
    • Ex: Primário = 220 Vac / Secundário = 220 Vac / valor = 1
    • Primário = 13.800 Vac / Secundário = 220 Vac / valor = 62
  • Set-Point Fator de Potência: Fator de potência desejado. Pode ser ajustado desde 0,92 até 0,99. Valor padrão: 0,950.
  • Endereço Modbus: Endereço do registrador na rede. Varia de 001 a 247. Valor padrão: 001.
  • Intervalo de Integração: Intervalo para cálculo de demanda. Pode variar de 1 minuto até 60 minutos. Valor padrão: 15 minutos.
  • Tempo entre Registros: Período de amostragem para registro na memória. Pode variar de 1 segundo até 60 minutos. Valor padrão: 600 segundos.
  • Modo de Registro do Conteúdo Harmônico: Define quais conteúdos harmônicos serão registrados: corrente, tensão ou ambos. Os valores podem ser:
    • 0 – não grava DH;
    • 1 – grava DH de tensão;
    • 2 – grava DH de corrente;
    • 3 – grava CH de tensão e corrente.
    • Valor padrão: 0.
  • Baud Rate: Velocidade de comunicação. Valor padrão: 19.200.
  • Tipo de Ligação: Determina o tipo de ligação: estrela (Y), delta (D) ou delta aberto (DA).
  • Horário de Ponta: Horário de início e término do período considerado de ponta de consumo (00 a 24 h). Valor padrão: Início: 18:00 Final: 21:00.
  • Constante Conversão Entrada Digital 1: Determina a quantidade de pulsos recebidos pela Entrada Digital 1 que deve ser considerada igual à um metro cúbico (1m³). Valor padrão: 01000.
  • Constante Conversão Entrada Digital 2: Determina a quantidade de pulsos recebidos pela Entrada Digital 2 que deve ser considerada igual à um metro cúbico (1m³). Valor padrão: 01000.

Menu Alarmes

Os alarmes são analisados 1 minuto após a energização do equipamento. Depois disso, os alarmes são acionados imediatamente após ser atingida a condição programada. Abaixo são listados os eventos que podem causar alarme:

  • FP indutivo: Se o FP ficar indutivo, abaixo do valor programado, por mais de 10 segundos, o alarme será acionado. Este alarme pode ser programado com valores de 0,80 a 0,99, ou então ficar desativado (OFF). Valor padrão: 0,85.
  • FP capacitivo: Se o FP ficar capacitivo, abaixo do valor programado, por mais de 10 segundos, o alarme será acionado. Pode ser programado com valores de 0,80 a 0,99, ou então ficar desligado (OFF). Valor padrão: 0,85.
  • Sobretensão: Tensão alta na rede de alimentação, ou percentual a mais sobre a tensão nominal. Sempre que o percentual programado for ultrapassado, o alarme será acionado. Os valores possíveis são 1 a 20% ou desligado (OFF). Valor padrão: OFF.
  • Subtensão: Tensão baixa na rede de alimentação, ou percentual a menos em relação à tensão nominal. Sempre que o percentual programado for ultrapassado, o alarme será acionado. Os valores possíveis são 1 a 30% ou desligado (OFF). Valor padrão: OFF.
  • Sobrecorrente: Sobrecorrente na medição, ou percentual dentro do valor do TC. Sempre que o percentual programado for ultrapassado, o alarme será acionado após 15 segundos. Os valores possíveis são 1 a 150% ou desligado (OFF). Valor padrão: OFF.
  • Subcorrente: Subcorrente na medição, ou percentual dentro do valor do TC. Sempre que o percentual programado for ultrapassado, o alarme será acionado após 15 segundos. Os valores possíveis são 1 a 20% ou desligado (OFF). Valor padrão: OFF.
  • Harmônicos de tensão: Conteúdo harmônico total da tensão elevado, ou percentual em relação à amplitude da fundamental. Sempre que o percentual programado for ultrapassado, o alarme será acionado. Pode ser programado de 1 a 50% ou desligado (OFF). Valor padrão: OFF.
  • Harmônicos de corrente: Conteúdo harmônico total da corrente elevado, ou percentual em relação à amplitude da fundamental. Sempre que o percentual programado for ultrapassado, o alarme será acionado. Pode ser programado de 1 a 50% ou desligado (OFF). Valor padrão: OFF.
  • Excesso de demanda ativa: Demanda de potência acima da programada. Sempre que o valor da demanda no intervalo de integração for ultrapassado o alarme será acionado. Valores possíveis 0 até 9999 KW. Valor padrão: OFF.

Operação

Descrição dos menus de leitura

A operação do registrador ST9250R se resume à visualização das gran­dezas medidas pelo equipamento nos menus Medidas Elétricas, DH tensão, DH corrente (os menus Programação e Alarmes são utilizados apenas para programar o equipamento, como foi visto no capítulo anterior). As opções de visualização/operação são descritas a seguir.

Medidas de Grandezas Elétricas

Utilizando as teclas UP e DOWN, selecione o menu Medidas Elétricas e pressione ENTER. O display passará a exibir o valor da tensão da rede e, depois, sucessivamente, as demais grandezas. Se desejar, utilize as teclas UP e DOWN para visualizar as outras medidas elétricas, conforme o desejado. Para encerrar a visualização das medidas elétricas, pressione ESC.

Conteúdo Harmônico de Tensão e de Corrente (DHT e DHC)

Através das teclas UP e DOWN, selecione o menu DH Tensão/Harm Tensão ou DH Corrente/Harm Corrente, conforme o desejado, e pressione a tecla ENTER. Você estará visualizando o conteúdo harmônico total da tensão ou da corrente, de acordo com o menu selecionado. A unidade de todas as medidas é %, e elas estão calculadas levando em conta o valor de 100% para a amplitude da fundamental. Utilize as teclas UP e DOWN para visualizar o valor da harmônica desejada.

[button_2 align=”center” href=”https://www.alfacomp.ind.br/pages/download_request/68″%5DBaixe aqui o manual técnico do multimedidor ST9250R[/button_2]

Solicite informações adicionais ou uma cotação

 

[button_2 color=”silver” align=”center” href=”https://contato.site/c99271594b/maquina-inicial/catalogo-geral-de-produtos”%5DCatálogo geral – Guia rápido contendo todos os produtos Alfacomp – Baixe aqui[/button_2]

Quando iniciei minha jornada na automação industrial há 28 anos, alguns modelos de CLP ainda utilizavam memórias EPROM. Ou seja, era necessário escrever o programa, compilar, gravar a EPROM, inserir a EPROM no soquete e testar a alteração. Eu costumava ter meia dúzia de EPROMs no apagador para ir alterando o programa, gravando e testando.

De lá para cá muita coisa mudou e o CLP passou a ser um produto de prateleira, uma “commodity”. Qualidade não é mais uma opção, todos têm ou estão fora do mercado. Nesses 28 anos desenvolvendo sistemas de controle e automação, grandes marcas se consagraram e novas marcas estão surgindo, é necessário critério para escolher.

Hoje quem manda é o mercado, o consumidor, e ele está cada dia mais criterioso. Reuni neste artigo alguns aspectos que considero importantes de serem considerados na hora de escolher o CLP para o próximo projeto, e quem sabe para os próximos anos.

10 fatores determinantes na escolha do CLP

  1. Suporte técnico
  2. Custo-benefício
  3. Custo da ferramenta de programação
  4. Desempenho do processador
  5. Relógio de tempo real
  6. Capacidade de simulação do programa sem necessidade de conectar ao CLP
  7. Portas de comunicação
  8. Protocolos de comunicação
  9. Capacidade de programação remota
  10. Facilidade de manutenção

Como a Alfacomp e a Haiwell abordam os 10 fatores

CLP - 10 fatores decisivos na escollha

1 – Suporte técnico

Pense no CLP que você está utilizando hoje, certamente é um produto de qualidade. A pergunta é: quando surge uma dúvida, você tem para quem ligar? Quando você liga, o suporte técnico ajuda você a pensar e solucionar o problema?

Pensando nisso, a Alfacomp disponibiliza os seguintes canais de comunicação:

[feature_block style=”icon” overall_style=”icon” columns=”3″ icon_style=”icon”][feature title=”suporte%40alfacomp.ind.br” icon=”97.png” upload_icon=”” bg_color=”” href=””][/feature] [feature title=”(51)3029.7161″ icon=”121.png” upload_icon=”” bg_color=”” href=””][/feature] [feature title=”(51)99380.2956″ icon=”114.png” upload_icon=”” bg_color=”” href=””][/feature] [/feature_block]

Documentação:

Manual de hardware e software contendo a descrição técnica completa da linha de CLPs da Haiwell.

 
[button_2 align=”center” href=”http://materiais.alfacomp.ind.br/manual-haiwell”%5DAcesse o manual de hardware e software[/button_2]
 

Treinamento on-line:

[img_text_aside style=”2″ image=”https://alfacompbrasil.com/wp-content/uploads/2017/11/Curso-automação-com-CLP-Haiwell-Aula-6.jpg&#8221; image_alignment=”right” headline=”Curso%20on-line%20de%20programa%C3%A7%C3%A3o%20e%20utiliza%C3%A7%C3%A3o%20do%20CLP%20Haiwell” alignment=”left”]

  • O curso de automação industrial utilizando o CLP Haiwell não tem custo. São aulas semanais divulgadas em nosso website. Para acompanhar, basta baixar os arquivos em PDF disponibilizados na página do curso
  • https://alfacompbrasil.com/2019/06/06/curso-de-automacao-com-clp-haiwell/
  • Esperamos estar colaborando para o crescimento pessoal dos interessados. Em caso de dúvida, não deixe de nos contatar.

[/img_text_aside]
[button_2 align=”center” href=”https://alfacompbrasil.com/2019/06/06/curso-de-automacao-com-clp-haiwell/”%5DAcesse a página do curso[/button_2]

2 – Custo-benefício

A linha de CLPs Haiwell é composta de 4 famílias de CPUs e uma extensa gama de módulos de expansão, cobrindo desde aplicações de simples inter-travamentos até a composição de redes de CPUs de alto desempenho em sistemas distribuídos de controle. Veja esta oferta:

[img_text_aside style=”2″ image=”https://alfacompbrasil.com/wp-content/uploads/2017/11/Kit-Treinamento-Haiwell.jpg&#8221; image_alignment=”left” headline=”Kit%20de%20treinamento” alignment=”left”]

  • CLP T16S0P-e com 8 entradas digitais, 8 saídas digitais, RS232, RS485 e Ethernet. Alimentação 24 VCC;
  • Fonte de alimentação S-25-24 com saída em 24 VCC e 25 W;
  • Cabo de programação;
  • Pen drive contendo todos os manuais e software de programação.
  • Preço promocional: R$ 975,00
  • Saiba mais: comercial@alfacomp.ind.br

[/img_text_aside]
Os CLPs Haiwell possuem o melhor custo-benefício do mercado.

3 – Custo da ferramenta de programação

[img_text_aside style=”2″ image=”https://alfacompbrasil.com/wp-content/uploads/2017/11/HaiwellHappy-610.jpg&#8221; image_alignment=”right” headline=”” alignment=”left”]A ferramenta HaiwellHappy é gratuita e sempre será, este é um compromisso da Haiwell e da Alfacomp.
[/img_text_aside]
 
[button_2 align=”center” href=”http://alfacomp.rds.land/haiwellhappy”%5DBaixe o software agora e sem custo[/button_2]

4 – Desempenho do processador

CLP com processador ARMOs CLPs Haiwell são dotados de processadores ARM de última geração. ARM é um acrônimo de Advanced RISC Machine, ou seja Máquina Avançad
a RISC, sendo RISC uma arquitetura baseada em um conjunto de instruções reduzidas e de alta velocidade de processamento. Os processadores ARM são relativamente recentes na história da tecnologia digital e são utilizados, entre outras aplicações, nos Smartphones e Tablets de última geração.

Porque os CLPs Haiwell foram desenvolvidos recentemente, utilizam processadores de última geração, resultando em equipamentos de alto desempenho e baixo consumo. Um exemplo desse desempenho é a capacidade de ler até 8 Encoders e controlar até 8 motores de passo com velocidades de I/O de 200 mil pulsos por segundo.

Por serem CLPs de alto desempenho, os CLPs Haiwell são ideais para tarefas de movimentação e posicionamento de precisão, como por exemplo no controle CNC.

5 – Relógio de tempo real