Blog Elements

You can display blog posts in various ways with the “Blog Post” element/shortcode. You can see one example here and even more at the blog main menu item of this demo.

Cálculo de rádio enlace

Uma abordagem prática voltada para sistemas de automação, telemetria e SCADA

O cálculo de rádio enlace avalia a viabilidade de comunicação entre dois pontos. Se você já teve que interligar equipamentos seriais que comunicam via RS232 ou RS485 em distâncias ou situações em que cabos seriais eram inviáveis, este artigo é para você. Utilizar rádio modem para comunicar equipamentos que se comunicam serialmente é mais fácil do que parece. Veja como calcular o enlace de rádio.

Componentes básicos de um rádio enlace

Cálculo de rádio enlace

Podemos definir como rádio enlace o conjunto de equipamentos necessários para estabelecer comunicação por rádio entre dois pontos. Os elementos básicos para a implementação de um rádio enlace são:

  • Rádio transmissor;
  • Linha de transmissão da estação transmissora;
  • Antena transmissora;
  • Meio de propagação;
  • Antena receptora;
  • Linha de transmissão da estação receptora;
  • Rádio receptor;

Comportamento da energia ao logo do percurso

Cálculo de rádio enlaceDesde a saída do transmissor até a chegada no receptor, o sinal sofre atenuações e ganhos. O gráfico ao lado representa a variação da intensidade do sinal ao longo do percurso. A intensidade do sinal sofre as seguintes alterações:

  • Perda no cabo do transmissor;
  • Ganho na antena transmissora;
  • Perda no espaço livre;
  • Ganho na antena receptora;
  • Perda no cabo do receptor.

As intensidades, perdas e ganhos são representados em decibel (dB).

A escala logarítmica

O dB é uma escala utilizada para representar a relação entre duas potências. São as seguintes as unidades de referência usuais nos sistemas de rádio:

  • dBW – relação entre uma dada potência e a unidade de 1W;
  • dBm – relação entre uma dada potência e a unidade de 1mW;
  • dBi – relação entre o ganho de uma antena e o ganho do irradiador isotrópico (antena teórica com diagrama de irradiação esférico).

O cálculo da relação entre duas potências é dado pela fórmula abaixo.

Cálculo de rádio enlace
Exemplo: Seja uma potência de 0,001 mW, sua intensidade dada em dBm é calculada como:
10 log (0,001 mW / 1 mW) = – 30 dBm

Cálculo de Rádio Enlace

Dizemos que um enlace é viável se a intensidade calculada do sinal recebido é maior do que o nível de sensibilidade do receptor, guardada a margem de segurança. O cálculo da intensidade de sinal recebido é dado pela fórmula abaixo:

Cálculo de rádio enlace

Onde:

  • Tx – Potência de saída do rádio transmissor (dBm);
  • Pt – Perda por atenuação no cabo da antena transmissora (dB);
  • Gt – Ganho na antena transmissora (dBi);
  • Ao – Atenuação no espaço livre (dB);
  • Gr – Ganho da antena receptora (dBi);
  • Pr – Perda por atenuação no cabo da antena receptora (dB);
  • RX – Sinal recebido (dBm).

Atenuação no Espaço Livre

Cálculo de rádio enlace

Uma onda eletromagnética propagando-se no espaço sofre uma atenuação contínua. A intensidade é inversamente proporcional ao quadrado da distância, ou seja, quando a distância dobra, o sinal diminui para um quarto do valor. A atenuação no espaço livre pode ser calculada pela fórmula abaixo.

Cálculo de rádio enlace
Onde:

  • D = distância em metros;
  • λ = Comprimento de onda (m) = 300 / freqüência (MHz);
  • Ao = Atenuação do espaço livre (dB).

Ou, utilizando a frequência (f) em MHz:

Cálculo de rádio enlace
Cálculo da Potência Efetivamente Irradiada (ERP)

A Potência Efetivamente Irradiada (ERP) por uma estação transmissora pode ser calculada pela fórmula abaixo.

Cálculo de rádio enlace
O valor da ERP é importante na análise para enquadramento das estações às normas da Anatel.

Perda por Obstrução da Primeira Zona de Fresnel

A energia transportada de uma antena transmissora até uma antena receptora é contida em elipsóides concêntricos chamados zonas de Fresnel. Dizemos que não existe perda por obstrução quando não há obstáculos dentro da primeira zona. Essa avaliação é feita levantando-se o perfil do terreno entre as duas estações com a ajuda de mapas cartográficos e calculando-se o raio da zona ao longo do percurso.
O cálculo do raio de Fresnel é apresentado abaixo.

Cálculo de rádio enlace
Perdas ocasionadas por obstruções conhecidas como  gume de faca são calculadas com base no percentual de liberação da primeira zona de Fresnel e seguem a fórmula abaixo.

Cálculo de rádio enlace
Onde v é o índice de liberação do raio de Fresnel dado por:

Cálculo de rádio enlace
Cálculo de rádio enlace

Ondas Eletromagnéticas

A energia enviada pelas antenas transmissoras e captada pelas antenas receptoras é transportada por ondas eletromagnéticas.Cálculo de rádio enlace Seu nome origina-se do fato de que são compostas por campos elétricos e magnéticos variáveis e se propagam no vácuo à velocidade de 300.000 quilômetros por segundo.

A maneira como os campos elétrico e magnético se orientam no espaço é chamada polarização. Se o campo elétrico é paralelo à superfície da Terra, dizemos que a polarização é horizontal; se o campo elétrico está em plano perpendicular à superfície da Terra, a polarização é vertical.

Podemos orientar antenas verticalmente ou horizontalmente.

Conceito: OEM é uma perturbação física composta por um campo elétrico (E) e um campo magnético (H) variáveis no tempo, perpendiculares entre si, capazes de se propagar no espaço.

Frequência: número de oscilações por unidade de tempo (Hz).

Cálculo de rádio enlaceComprimento de onda: distância percorrida pela onda durante um ciclo. É definido pela velocidade de propagação dividida pela frequência. Ver fórmula ao lado.

Antenas

Antenas são dispositivos capazes de transmitir e captar ondas eletromagnéticas nas faixas de radiofrequência. São compostas de componentes metálicos nas mais variadas configurações. Os comprimentos e a disposição dos elementos irão depender das frequências em que se deseja operar. Alguns tipos de antenas são listados abaixo.

  • Yagi;
  • Painel Setorial;
  • Omnidirecional;
  • Antenas Patch;
  • Log – Periódica;

As antenas de interesse principal em telemetria são a Yagi e a omnidirecional.

Antena Yagi – Uda

Normalmente conhecida apenas por antena Yagi, foi concebida em 1926 por Shintaro Uda da Universidade Tohoku do Japão com a colaboração de Hidetsugu Yagi, que teve seu nome associado à antena quando publicou o primeiro artigo em inglês descrevendo a mesma. Conceitualmente, a antena Yagi é composta por um Refletor, um dipolo simples ou dobrado e um ou mais diretores. A antena da figura é apresentada na posição de polarização vertical que é normalmente utilizada em telemetria e apresenta ganhos que vão de 3 até mais de 20 dBi.

Antena Omnidirecional

Normalmente construídas com a concepção colinear, essas antenas, como sugere o nome, irradiam com a mesma intensidade em todas as direções do plano horizontal. Sua polarização é naturalmente vertical e apresenta ganhos na faixa de 2 a 10 dBi.

 

Polarização de Antenas

Cálculo de rádio enlaceA figura a seguir apresenta a irradiação resultante de um dipolo simples polarizado verticalmente. Em polarização vertical, o plano elétrico é perpendicular à superfície da Terra, enquanto o plano magnético é paralelo à superfície da Terra.

Cálculo de rádio enlace

 

Diagrama de Irradiação

Cálculo de rádio enlaceO diagrama de irradiação é a representação gráfica da forma como a energia eletromagnética se distribui no espaço.

O diagrama pode ser obtido tanto pelo deslocamento de uma antena de prova em torno da antena que se está medindo, como pela rotação dessa em torno do seu eixo, enviando os sinais recebidos a um receptor capaz de discriminar com precisão a frequência e a potência recebidas.

Os resultados obtidos são geralmente normalizados. Ao máximo sinal recebido é dado o valor de 0 dB, facilitando a interpretação dos lóbulos secundários e a relação frente-costas.

A curva em azul representa a energia irradiada em cada direção em torno da antena.

Ângulo de Meia Potência

Cálculo de rádio enlaceOs ângulos de meia potência são definidos pelos pontos no diagrama onde a potência irradiada equivale à metade da irradiada na direção principal. Esses ângulos definem a abertura da antena no plano horizontal e no plano vertical.

OBS: -3 dB = 50% Potência

No exemplo ao lado temos: Ângulo de –3dB = 55°

 

Diretividade

É a relação entre o campo irradiado pela antena na direção de máxima irradiação e o campo que seria gerado por uma antena isotrópica que recebesse a mesma potência. A diretividade de uma antena define sua capacidade de concentrar a energia irradiada numa determinada direção.

Cálculo de rádio enlace
          E máx = Energia da antena em estudo.
          E isso = Energia da antena isotrópica.

Ganho

O ganho pode ser entendido como o resultado da diretividade menos as perdas. Matematicamente, é o resultado do produto da eficiência pela diretividade.

Cálculo de rádio enlace
G = Ganho
D = Diretividade
η = Eficiência
A eficiência de uma antena diz respeito ao seu projeto eletromagnético como um todo, ou seja, são todas as perdas envolvidas (descasamento de impedância, perdas em dielétricos, lóbulos secundários…). Normalmente, está na faixa de 90% a 95%.

Cabos

Linha de transmissão é uma linha com dois ou mais condutores isolados por um dielétrico que tem por finalidade fazer com que uma OEM se propague de modo guiado. Essa propagação deve ocorrer com a menor perda possível. As linhas de transmissão podem ser construídas de diversas maneiras: cabos paralelos, pares trançados, microstrip, cabos coaxiais, guias de onda, etc.
Os cabos coaxiais são as linhas de transmissão mais utilizadas em aplicações de telemetria.Cálculo de rádio enlace
Conectores e Protetores Contra Surto

A tabela a seguir apresenta alguns dos conectores mais utilizados nas aplicações de Telemetria.Cálculo de rádio enlace
Exemplo de rádio modem utilizado em telemetria, automação e SCADA

Rádio modem

rádio modem P900 com tecnologia spread spectrum possui conectores e LEDs que facilitam a instalação e utilização. O gabinete robusto, a larga faixa de temperatura de operação e o baixo custo tornam o rádio modem P900 a solução ideal para o controle e monitoração de estações remotas de telemetria e para todo o tipo de aplicação industrial onde a comunicação serial é necessária. O P900 incorpora ainda a capacidade de compor redes  Mesh de última geração com a capacidade de restabelecimento automático de rotas de comunicação (Self Healing).

 

Rádios de dados – Data radio

Em aplicações onde as distâncias são grandes ou o uso de cabos seriais é difícil, ou até impossível, considere a utilização de rádios modem para a comunicação de dados entre dispositivos que utilizam interface serial RS232 ou RS485 com velocidades entre 1.200 e 115.200 bps, ou interface Ethernet, em distâncias de dezenas de metros até 80 km.

Utilize rádios modem nas faixas de 900 MHz e 2.4 GHz para comunicação em até 60 km com visada e dispensa de licenciamento dos pontos na Anatel.

Utilize rádios modem canalizados e frequências de 140 MHz a 470 MHz para a comunicação em até 80 km e sem visada. Esses necessitam de projeto de utilização junto a Anatel.

 

FENASAN 2021 - Congresso Nacional de Saneamento e Meio Ambiente

FENASAN 2021 – Congresso Nacional de Saneamento e Meio Ambiente

, ,
FENSAN 2021 acontece de 14 a 16 de setembro no Expo Center Norte - São Paulo - SP Promovida há 32 anos consecutivos pela AESabesp - Associação dos Engenheiros da Sabesp, o Encontro Técnico da AESabesp – Congresso Nacional de Saneamento…

SIMAE DE JOAÇABA – 20 ANOS DE TELEMETRIA DO SANEAMENTO

,
SIMAE DE JOAÇABA - 20 ANOS DE TELEMETRIA DO SANEAMENTO Queremos te contar uma história real sobre um sistema de telemetria do saneamento que funciona há mais de vinte anos nas cidades de Joaçaba, Herval d'Oeste e Luzerna no estado de Santa…

Soluções de comunicação para a telemetria do saneamento

, ,
O telemetria do saneamento demanda soluções de comunicação para o controle e supervisão dos reservatórios e elevatórias de água e esgoto, ETAs e ETEs. Desde 1994, a Alfacomp fornece soluções de comunicação para a telemetria do…
SEMAE DE SÃO LEOPOLDO - TELEMETRIA

Telemetria do SEMAE de São Leopoldo – Eficiência e qualidade desde 2012

,
Inaugurado em Dezembro de 2012 pelo prefeito Ary Vanazzi e pelo diretor geral do SEMAE, Anderson Etter, o sistema de telemetria da distribuição de água da cidade de São Leopoldo/RS demonstrou ser uma ferramenta fundamental na garantia da…
IA2820 - Esquemático

Veja como ler sinais analógicos de 4 a 20 mA na entrada digital do CLP

,
Este artigo explica como implementar um circuito que permite ler até oito sinais analógicos de 4 a 20 mA na entrada digital de um CLP que não possui entradas analógicas. A solução apresentada possui excelente custo benefício. Antes de…